A helium-filled weather balloon has a 0.90 m radius at liftoff where air pressure is 1.0 atm and the temperature is 298 K. When airborne, the temperature is 210 K, and its radius expands to 3.0 m. What is the pressure at the airborne location

Answers

Answer 1

Answer:

0.019 atm

Explanation:

Assume ideal gas, so PV/T is constant where P is pressure, V is volume and a product of radius R cubed and a constant C, T is the temperature

[tex]\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}[/tex]

[tex]P_2 = P_1\frac{V_1}{V_2}\frac{T_2}{T_1}[/tex]

[tex]P_2 = P_1\frac{CR_1^3}{CR_2^3}\frac{T_2}{T_1}[/tex]

[tex]P_2 = P_1\left(\frac{R_1^3}{R_2^3}\right)^3\frac{T_2}{T_1}[/tex]

[tex]P_2 = 1\left(\frac{0.9}{3}\right)^3\frac{210}{298}[/tex]

[tex]P_2 = 0.3^3*0.7 = 0.019 atm[/tex]

Answer 2
Final answer:

The student's question about the change in pressure of a helium-filled weather balloon as it expands and cools at altitude can be answered using the ideal gas law. By comparing initial and final conditions of pressure, volume, and temperature, and using the equation P2 = P1V1T2 / (T1V2), the new pressure can be determined.

Explanation:

The student is asking how to determine the pressure inside a helium-filled weather balloon when it rises to an altitude where the external conditions change. We are given the initial temperature, pressure, and radius of the balloon at liftoff, and the radius at its airborne location where the external temperature has decreased. To solve this problem, the ideal gas law is used in combination with the assumption that the balloon expands isotropically (uniformly in all directions). Since the internal pressure of the balloon must balance the external air pressure plus the pressure due to the tension in the balloon's material, we need to use a modified version of the ideal gas law that accounts for changes in temperature and volume to find the new pressure.

Given that the temperature and volume of the balloon change upon reaching altitude, if the volume and temperature of a gas are changed and the amount of gas (number of moles) remains constant, the ideal gas law (PV = nRT) can be rearranged to show the relationship between initial and final states:

P1V1/T1 = P2V2/T2

Where P1, V1, and T1 are the initial pressure, volume, and temperature and P2, V2, and T2 are the final pressure, volume, and temperature, respectively. Since we know all variables except for P2, we can solve for P2 by rearranging the equation to:

P2 = P1V1T2 / (T1V2)

However, it is important to note that we must convert the volumes from radius measurements to actual volumes using the formula for the volume of a sphere, V = (4/3)πr3, and we must use absolute temperatures in Kelvin.

Using this equation with the provided values (making sure to convert units where necessary), the student will be able to determine the pressure at the airborne location for the weather balloon.


Related Questions

A jet plane is cruising at 300 m/s when suddenly the pilot turns the engines up to full throttle. After traveling 4.9 km , the jet is moving with a speed of 400 m/s.

a. What is the jet's acceleration, assuming it to be a constant acceleration?
b-Is your answer reasonable ? Explain.

Answers

The jet's acceleration is calculated as 7.14 m/s² using a kinematic equation. This value is reasonable for a jet plane given its powerful engines. High-speed aircraft often have high accelerations.

To determine the jet's acceleration, we can apply the kinematic equation:

vf² = vi² + 2aΔx

where:

vf is the final velocity (400 m/s)vi is the initial velocity (300 m/s)a is the accelerationΔx is the displacement (4.9 km or 4900 m)

Solving for acceleration a:

400² = 300² + 2a(4900)

160000 = 90000 + 9800a

70000 = 9800a

a = 7.14 m/s²

Reasonableness of the Answer

Yes, the answer is reasonable. Accelerations for jet planes are typically high due to the powerful engines they possess. An acceleration of 7.14 m/s² aligns well with the capabilities of high-speed aircraft.

A rock is thrown straight up into the air with an initial speed of 55 m/s at time t = 0. Ignore air resistance in this problem. At what times does it move with a speed of 36 m/s? Note: There are two answers to this problem.

Answers

Answer:

After 1.938 sec velocity of rock will be 36 m/sec

Explanation:

We have given initial velocity at which rock is thrown u = 55 m/sec

Final velocity v = 36 m/sec

Acceleration due to gravity [tex]g=9.8m/sec^2[/tex]

According to first equation of motion we know that [tex]v=u+gt[/tex], here v is final velocity, u is initial velocity, g is acceleration due to gravity and t is time

So [tex]36=55-9.8t[/tex] ( Negative sign is due to rock is thrown upward )

So [tex]9.8t=19[/tex]

t = 1.938 sec

So after 1.938 sec velocity of rock will be 36 m/sec

A transverse wave on a string is described by the following wave function.y = (0.090 m) sin (px/11 + 4pt)(a) Determine the transverse speed and acceleration of an element of the string at t = 0.160 s for the point on the string located at x = 1.40 m.Your response differs from the correct answer by more than 10%. Double check your calculations. m/sm/s2(b) What are the wavelength, period, and speed of propagation of this wave?msm/s

Answers

Explanation:

(a) It is known that equation for transverse wave is given as follows.

                 y = [tex](0.09 m)sin(\pi \frac{x}{11} + 4 \pi t)[/tex]

Now, we will compare above equation with the standard form of transeverse wave equation,

                 y = [tex]A sin(kx + \omega t)[/tex]

where,    A is the amplitude = 0.09 m

              k is the wave vector = [tex]\frac{\pi}{11}[/tex]

              [tex]\omega[/tex] is the angular frequency = [tex]4\pi[/tex]

              x is displacement = 1.40 m

              t is the time = 0.16 s

Now, we will differentiate the equation with respect to t as follows.

The speed of the wave  will be:

                   v(t) = [tex]\frac{dy}{dt}[/tex]

                v(t) = [tex]A \omega cos(kx + \omega t)[/tex]

        v(t) = [tex](0.09 m)(4\pi) cos(\frac{\pi \times 1.4}{11} + 4 \pi \times 0.16)[/tex]

          v(t) = -0.84 m/s

The acceleration of the particle in the location is

            a(t) = [tex]\frac{dv}{dt}[/tex]

           a(t) = [tex]-A \omega 2sin(kx + \omega t)[/tex]

           a(t) = [tex]-(0.09 m)(4 \pi)2 sin(\frac{\pi \times 1.4}{11} + 4\pi \times 0.16)[/tex]

           a(t) = -9.49 [tex]m/s^{2}[/tex]

Hence, the value of transverse wave is 0.84 m/s and the value of acceleration is 9.49 [tex]m/s^{2}[/tex] .

(b)  Wavelength of the wave is given as follows.

               [tex]\lambda = \frac{2\pi}{k}[/tex]

              [tex]\lambda = (frac{2\pi}{\frac{\pi}{11}) [/tex]

              [tex]\lambda[/tex] = 22 m

The period of the wave is

             T = [tex]\frac{2 \pi}{\omega}[/tex]

             T = [tex]\frac{2 \pi}{4 \pi}[/tex]

                = 0.5 sec

Now, we will calculate the speed of propagation of wave as follows.

                    v = [tex]\frac{\lambda}{T}[/tex]

                       = [tex]\frac{22 m}{0.5 s}[/tex]

                       = 44 m/s

therefore, we can conclude that wavelength is 22 m, period is 0.5 sec, and speed of propagation of wave is 44 m/s.

Final answer:

To find the transverse speed and acceleration of an element on a string given its wave function and specific values for time and position, we differentiate the wave function with respect to time. The first derivative gives us speed, and the second derivative provides acceleration. To determine the wave's wavelength, period, and propagation speed, we compare the wave function to its standard form and use the wave number and angular frequency.

Explanation:

To determine the transverse speed and acceleration of a string element for the given wave function y = (0.090 m) sin (px/11 + 4pt) at t = 0.160 s and x = 1.40 m, we need to take the first and second derivatives of the wave function with respect to time. We also need to convert the given wave function into SI units for consistency.

First, let's tackle the transverse speed, which is given by the first derivative of the displacement y with respect to time t. Acceleration is given by the second derivative with respect to time.

(a) At t = 0.160 s and x = 1.40 m:
Vy = ∂y/∂t = 4p(0.090m)cos(px/11 + 4pt)
Acceleration, ay = ∂^2 y/∂t^2 = -16π^2(0.090m)sin(px/11 + 4pt)

Now plug in the values of x and t to get the numerical measure of speed and acceleration.

(b) To find the wavelength, period, and wave propagation speed, compare the wave function's format to the standard form y(x, t) = A sin (kx - ωt), where k is the wave number related to wavelength (λ) by k = 2π/λ and ω is the angular frequency related to period (T) by ω = 2π/T. The wave speed (v) is given by v = λ/T.

Identify k and ω from the wave function and calculate the wavelength, period, and wave speed.

The distance between Pluto and the Sun is 39.1 times more than the distance between the Sun and Earth. Calculate the time taken by Pluto to orbit the Sun in Earth days.

Answers

Answer:

Explanation:

Given

Distance between Pluto and sun is 39.1 times more than the distance between earth and sun

According to Kepler's Law

[tex]T^2=kR^3[/tex]

where k=constant

T=time period

R=Radius of orbit

Suppose [tex]R_1[/tex] is the radius of orbit of earth and sun

so Distance between Pluto and sun is [tex]R_2=39.1\cdot R_1[/tex]

[tex]T_1[/tex] and [tex]T_2[/tex] is the time period corresponding to [tex]R_1[/tex] and R_2[/tex]

[tex](T_1)^2=k(R_1)^3---1[/tex]

[tex](T_2)^2=k(R_2)^3---2[/tex]

divide 1 and 2

[tex](\frac{365}{T_2})^2=(\frac{R_1}{39.1})^3[/tex]

[tex]T_2^2=365^2\times 39.1^3[/tex]

[tex]T_2=89239.67\ Earth\ days[/tex]                      

Final answer:

Using Kepler's Third Law of Planetary Motion, we can calculate that it takes Pluto approximately 92,446 Earth days to complete one orbit around the Sun.

Explanation:

To calculate the time taken by Pluto to orbit the Sun, we use Kepler's Third Law of Planetary Motion, which states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. Given that the distance between Pluto and the Sun is approximately 39.1 times more than the distance between the Earth and the Sun, we could simplify and use the approximation that Pluto's distance in astronomical units (AU) is roughly 40, as given in the reference information.

Pluto's orbital period (P) can be calculated using the average distance from the Sun (a) with the formula P² = a³. Here, we assume Earth's orbital period to be 1 Earth year and its distance as 1 AU by definition. Therefore, for Pluto:

a = 40 AU (Pluto's distance from the Sun) P² = 40³ P² = 64,000 P = √64,000 P ≈ 253 (Pluto's orbital period in Earth years)

To convert this period into Earth days, we multiply by the number of days in one Earth year (365.25 days, accounting for the leap year cycle):

P (in days) = 253 years × 365.25 days/year P (in days) ≈ 92,446.25 days

Hence, it takes Pluto approximately 92,446 Earth days to complete one orbit around the Sun.

Suppose that one sphere is held in place; the other sphere, with mass 1.40 g, is shot away from it. What minimum initial speed would the moving sphere need to escape completely from the attraction of the fixed sphere?

Answers

Answer:

The minimum initial speed is 20.0 m/s.

Explanation:

Given that,

Mass of sphere = 1.40 g

Suppose a system of two small spheres, one carrying a charge of 1.70 μC and the other a charge of -4.40 μC , with their centers separated by a distance of 0.240 m .

We need to calculate the potential energy

Using formula of potential energy

[tex]P.E=\dfrac{kq_{1}q_{2}}{d}[/tex]

Put the value into the formula

[tex]P.E=\dfrac{9\times10^{9}\times1.70\times10^{-6}\times4.40\times10^{-6}}{0.240}[/tex]

[tex]P.E=-280.5\times10^{-3}\ J[/tex]

We need to calculate the minimum initial speed

Using formula of energy

[tex]K.E=-P.E[/tex]

[tex]\dfrac{1}{2}mv^2=-280.5\times10^{-3}[/tex]

Put the value into the formula

[tex]\dfrac{1}{2}\times1.40\times10^{-3}\times v^2=280.5\times10^{-3}[/tex]

[tex]v=\sqrt{\dfrac{2\times280.5\times10^{-3}}{1.40\times10^{-3}}}[/tex]

[tex]v=20.0\ m/s[/tex]

Hence, The minimum initial speed is 20.0 m/s.

As we learned in class if a material’s crystal structure is known a theoretical density, ????, can be computed from a tiny fundamental unit using the formula ???? = ???????? ????c???????? Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol. Compute and compare its theoretical density with its experimentally measured density of 7.87 g/cm^3.

Answers

Answer : Yes, theoretical density can be computed from a tiny fundamental unit using the formula [tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex].

Explanation :

Nearest neighbor distance, r = [tex]0.124nm=1.24\times 10^{-8}cm[/tex] [tex](1nm=10^{-7}cm)[/tex]

Atomic mass (M) = 55.85 g/mol

Avogadro's number [tex](N_{A})=6.022\times 10^{23} mol^{-1}[/tex]

For BCC = Z = 2

Given density = [tex]7.87g/cm^3[/tex]

First we have to calculate the cubing of edge length of unit cell for BCC crystal lattice.

For BCC lattice : [tex]a^3=(\frac{4r}{\sqrt{3}})^3=(\frac{4\times 1.24\times 10^{-8}cm}{\sqrt{3}})^3=2.35\times 10^{-23}cm^3[/tex]

Now we have to calculate the density of unit cell for BCC crystal lattice.

Formula used :  

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex] .............(1)

where,

[tex]\rho[/tex] = density

Z = number of atom in unit cell (for BCC = 2)

M = atomic mass

[tex](N_{A})[/tex] = Avogadro's number  

a = edge length of unit cell

Now put all the values in above formula (1), we get

[tex]\rho=\frac{2\times (55.85g/mol)}{(6.022\times 10^{23}mol^{-1}) \times (2.35\times 10^{-23}Cm^3)}=7.89g/Cm^{3}[/tex]

From this information we conclude that, the given density is approximately equal to the given density.

Yes, theoretical density can be computed from a tiny fundamental unit using the formula [tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex].

A 5.0-μC charge is placed at the 0 cm mark of a meter stick and a -4.0 μC charge is placed at the 50 cm mark. At what point on a line joining the two charges is the electric field zero?

Answers

Final answer:

To find where the electric field is zero between two point charges (5.0 μC and -4.0 μC), set up an equation based on Coulomb's Law and solve it considering that the point lies closer to the smaller magnitude charge.

Explanation:

The question requires the application of concepts from electrostatics, specifically the properties of the electric field generated by point charges. To determine the point at which the electric field is zero, one must consider the magnitudes of the charges and their distances from the point of interest. Since electric fields generated by individual charges superpose, the point where the electric field is zero is where the electric field due to one charge balances out the electric field due to the other charge.

For two charges Q1 (+5.0 μC) and Q2 (-4.0 μC) separated by 50 cm (0.5 meters), the electric field is zero at a point that is closer to the smaller magnitude charge. Let's call the distance from Q1 to the point where the field is zero 'd'. Using Coulomb's Law and the concept of superposition, we can set up the equation:

E1 = E2
|k * Q1 / d^2| = |k * Q2 / (0.5 - d)^2|
|Q1/d^2| = |Q2/(0.5 - d)^2|

Substituting Q1 and Q2 with their respective values, we can solve for 'd' using algebraic methods to find the point on the meter stick where the electric field equals zero. However, since the solution requires calculations, it is important to apply the proper mathematical steps to reach the correct conclusion.

A projectile is fired with an initial speed of 40 m/s at an angle of elevation of 30∘. Find the following: (Assume air resistance is negligible. Your answer should contain the gravitational constant ????.)

a. The time at which the maximum height is achieved is functionsequation editor s.
b. The maximum height achieved by the projectile is functionsequation editor m.
c. The time when the projectile hits the ground is functionsequation editor s.
d. The range of the projectile is functionsequation editor m.
e. The speed of the projectile on impact with the ground is functionsequation editor m/s.

Answers

Answer:

a. 2.0secs

b. 20.4m

c. 4.0secs

d. 141.2m

e. 40m/s, ∅= -30°

Explanation:

The following Data are giving

Initial speed U=40m/s

angle of elevation,∅=30°

a. the expression for the time to attain the maximum height is expressed as

[tex]t=\frac{usin\alpha }{g}[/tex]

where g is the acceleration due to gravity, and the value is 9.81m/s if we substitute values we arrive at

[tex]t=40sin30/9.81\\t=2.0secs[/tex]

b. the expression for the maximum height is expressed as

[tex]H=\frac{u^{2}sin^{2}\alpha }{2g} \\H=\frac{40^{2}0.25 }{2*9.81} \\H=20.4m[/tex]

c. The time to hit the ground is the total time of flight which is twice the time to reach the maximum height ,

Hence T=2t

T=2*2.0

T=4.0secs

d. The range of the projectile is expressed as

[tex]R=\frac{U^{2}sin2\alpha}{g}\\R=\frac{40^{2}sin60}{9.81}\\R=141.2m[/tex]

e. The landing speed is the same as the initial projected speed but in opposite direction

Hence the landing speed is 40m/s at angle of -30°

An orange loses 1.2 kJ of heat as it cools per °C drop in its temperature. What is the amount of heat loss from the orange per °F drop in its temperature?

Answers

To solve this problem we will apply the conversion rate between Celcius and Fahrenheit degrees. We will use the direct relationship clearly and not the added degrees of scale conversion. We know from the statement that the orange loses heat at the rate of

[tex]Q = 1.2kJ/\°C[/tex]

We have the conversion to °F is given as

[tex]T (\°F) = 1.8T+32[/tex]

Calculate the amount of heat loss from orange per °F

[tex]Q = \frac{1.2}{1.8}[/tex]

[tex]Q = 0.667kJ/\°F[/tex]

Therefore the amount of heat loss from the orange per °F drop in its temperature is 0.667kJ/°F

Final answer:

The heat loss from an orange per °F drop is 0.67 kJ, calculated by taking 1.2 kJ per °C drop and dividing it by 1.8 to convert it to Fahrenheit,

Explanation:

The heat loss from the orange per °F drop in its temperature can be found by converting 1.2 kJ lost per 1 °C drop in temperature to kJ lost per 1 °F drop. This can be achieved using the formula that 1 °C equals 1.8 °F.

Therefore, the heat loss per degree Fahrenheit will be less than the heat loss per degree Celsius. We calculate this as follows:
(1.2 kJ / °C) / 1.8 = 0.67 kJ per °F.

So for every degree Fahrenheit that the orange cools, it will lose 0.67 kilojoules of heat.

Learn more about Heat loss here:

https://brainly.com/question/31857421

#SPJ3

In uniform circular motion, how does the acceleration change when the speed is increased by a factor of 3? When the radius is decreased by a factor of 2?

Answers

Answer:

The acceleration will become 9/2 times.

a' =9/2 a

Explanation:

We know that acceleration of a particle when it is moving in the circular path is given as

[tex]a=\omega^2\ r[/tex]

r=radius

ω= angular speed

If the speed ω '= 3 ω

If the radius ,[tex]r'=\dfrac{r}{2}[/tex]

The final acceleration =a'

[tex]a'=\omega^2'\ r'[/tex]

[tex]a'=(3\omega)^2\times \dfrac{r}{2}[/tex]

[tex]a'=9\omega^2\times \dfrac{r}{2}[/tex]

[tex]a'=\omega^2\times \dfrac{9r}{2}[/tex]

[tex]a'= \dfrac{9r}{2}\times \omega^2\times r[/tex]

[tex]a'=\dfrac{9}{2}a[/tex]

Therefore the acceleration will become 9/2 times.

At its Ames Research Center, NASA uses its large "20-G" centrifuge to test the effects of very large accelerations ("hypergravity") on test pilots and astronauts. In this device, an arm 8.84 m long rotates about one end in a horizontal plane, and an astronaut is strapped in at the other end. Suppose that he is aligned along the centrifuge’s arm with his head at the outermost end. The maximum sustained acceleration to which humans are subjected in this device is typically 12.5 g. (a) How fast must the astronaut’s head be moving to experience this maximum acceleration? (b) What is the difference between the acceleration of his head and feet if the astronaut is 2.00 m tall? (c) How fast in rpm (rev/min) is the arm turning to produce the maximum sustained acceleration?

Answers

Answer:

32.9242311983 m/s

1.40506567727g

35.3405770759 rpm

Explanation:

v = Linear Velocity of the capsule

[tex]a_c[/tex] = Centripetal acceleration = [tex]12.5g=12.5\times 9.81[/tex]

r = Radius of the centrifuge = 8.84 m

l = Person's height = 2 m

Centripetal acceleration is given by

[tex]a_c=\frac{v^2}{r}\\\Rightarrow v=a_cr\\\Rightarrow v=\sqrt{12.5\times 9.81\times 8.84}[/tex]

The linear speed of the capsule is 32.9242311983 m/s

The radius would be

[tex]r=\sqrt{r^2+\dfrac{l^2}{4}}\\\Rightarrow r=\sqrt{8.84^2+\dfrac{2^2}{4}}\\\Rightarrow r=8.89638128679\ m[/tex]

The centripetal acceleration

[tex]a_{c2}=\dfrac{32.9242311983^2}{8.89638128679\times 9.81}g\\\Rightarrow a_{c2}=12.4207805891g[/tex]

Change in acceleration from Pythagoras law

[tex]a=\sqrt{a_{ch}^2-a_{c2}^2}\\\Rightarrow a=\sqrt{12.5^2g^2-12.4207805891^2g^2}\\\Rightarrow a=1.40506567727g[/tex]

The difference is 1.40506567727g

Velocity

[tex]v=\omega r\\\Rightarrow v=2\pi Nr\\\Rightarrow N=\dfrac{v}{2\pi r}\\\Rightarrow N=\dfrac{32.9242311983}{2\pi 8.89638128679}\\\Rightarrow N=0.589009617932\ rev/s[/tex]

[tex]N=0.589009617932\times 60=35.3405770759\ rpm[/tex]

The speed is 35.3405770759 rpm

By standard convention, both the electric potential and the the electric potential energy between two charges is taken to be zero in what configuration?

Answers

Answer: at when distance r = infinity.

Explanation: The formulae for the electric potential of an electric charge to an arbitrary point is given by the formulae below

V = q/4πεr

V = electric potential (volts)

q = magnitude of electric charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

In the equation above, it can be seen that only electric potential (v) and distance (r) is a variable, and there is an inverse relationship between them (an increase in one leads to a decrease in the other)

Thus to have zero value of electric potential (v= 0) we have to have the largest value of r ( r = infinity).

Same goes for electric potential energy between two charges, the formulae is given below as

W = q1 *q2/4πεr

W= electric potential energy

q1 = magnitude of first charge.

q2 = magnitude of second charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

Also, all values are constant aside from electric potential energy (w) and distance (r) which have an inverse relationship.

Thus to have zero value of electric potential energy (w =0), we have to get an infinite value of distance ( r =infinity)

A uniform line charge extends from x = - 2.6 cm to x = + 2.6 cm and has a linear charge density of = 5.5 nC/m.(a) Find the total charge.Find the electric field on the y axis at the following distances.(b) y = 4 cm(c) y = 12 cm

Answers

Answer with Explanation:

We are given that

x=-2.6 cm to x=2.6 cm

Linear charge density=[tex]\lambda=5.5nC/m=5.5\times 10^{-9} C/m[/tex]

[tex]1nC=10^{-9} C[/tex]

Length of wire=[tex]2.6-(-2.6)=2.6+2.6=5.2cm[/tex]

Length of wire=[tex]\frac{5.2}{100}=0.052m[/tex]

1 m=100 cm

We know that

a.Linear charge density=[tex]\frac{Q}{L}[/tex]

Where Total charge =Q

Length=L

Total charge,Q=[tex]\lambda L[/tex]

Using the formula

Total charge,Q=[tex]5.5\times 10^{-9}\times 0.052=2.86\times 10^{-10}C[/tex]

b.y=4 cm=[tex]\frac{4}{100}=0.04m[/tex]

1 m=100 cm

Electric field on the y-axis is given by

[tex]E=\frac{2\lambda}{4\pi\epsilon_0 y}(\frac{L}{\sqrt{4y^2+L^2}}[/tex]

[tex]\frac{1}{4\pi\epsilon_0}=9\times 10^9 Nm^2/C^2[/tex]

Using the formula

[tex]E=\frac{2\times 5.5\times 10^{-9}\times 9\times 10^9\times 0.052}{0.04\times \sqrt{4(0.04)^2+(0.052)^2}}[/tex]

[tex]E=1348.8N/C[/tex]

c.y=12 cm=[tex]\frac{12}{100}=0.12m[/tex]

Using the formula

[tex]E=\frac{2\times 5.5\times 10^{-9}\times 9\times 10^9\times 0.052}{0.12\times \sqrt{4(0.12)^2+(0.052)^2}}[/tex]

[tex]E=174.7N/C[/tex]

Final answer:

To find the total charge of the uniform line charge, multiply the linear charge density by the length of the line. To find the electric field at a certain distance on the y axis, use the formula for electric field due to a line charge.

Explanation:

(a) To find the total charge of the line, we need to multiply the linear charge density by the length of the line:

Charge = (Linear charge density)*(Length)

Convert the length to meters:

Length = (2.6 cm + 2.6 cm) = 0.052 m

Total Charge = (5.5 nC/m)*(0.052 m) = 0.286 nC

(b) To find the electric field at y = 4 cm, we can use the formula:

Electric Field = (Linear charge density)/(2πε₀y)

Convert the linear charge density to C/m:

Charge density = 5.5 nC/m = 5.5 x 10-9 C/m

Electric Field = (5.5 x 10-9 C/m)/(2πε₀(0.04 m))

(c) To find the electric field at y = 12 cm, we can use the same formula:

Electric Field = (5.5 x 10-9 C/m)/(2πε₀(0.12 m))

A heavy neutral atom, such as iron, produces many spectral lines compared to light elements like hydrogen and helium. Why?

Answers

Answer:

Due to a larger number of electrons in the heavy atoms.

Explanation:

Spectral lines are caused by the emission of light by electrons when they transit from a higher energy state(excited state) to a lower energy state.

Hence, the more electrons an atom has, the more the emission and spectral lines. The less the electrons an atom has, the less the emission and spectral lines.

Therefore, heavy nuclei (which contain more electrons) such as Iron will emit more light and so will have more spectral lines than light atoms like Hydrogen and Helium.

Answer:

more electrons in heavy atoms

Explanation:

Equipotential surface A has a potential of 5650 V, while equipotential surface B has a potential of 7850 V. A particle has a mass of 6.90 10-2 kg and a charge of +5.35 10-5 C. The particle has a speed of 2.00 m/s on surface A. A nonconservative outside force is applied to the particle, and it moves to surface B, arriving there with a speed of 3 m/s. How much work is done by the outside force in moving the particle from A to B?

Answers

Explanation:

Formula for the change in potential energy from point A to B is as follows.

           P.E = [tex](V_{A} - V_{B}) \times q[/tex]

Putting the given values into the above formula as follows.

          P.E = [tex](V_{A} - V_{B}) \times q[/tex]

                 = [tex](5650 - 7850) \times 5 \times 10^{-5}[/tex]

                 = -0.11 J

Now, we will calculate the change in kinetic energy as follows.

            K.E = [tex]0.5 \times m \times (v^{2}_{B} - v^{2}_{A})[/tex]

                  = [tex]0.5 \times 6.90 \times 10^{-2} \times (2^{2} - 1^{2})[/tex]

                  = 0.1035 J

Therefore, supplied difference by the outside force is calculated as follows.

           0.1035 J - (-0.11) J

          = 0.2135 J

Thus, we can conclude that work is done by the outside force in moving the particle from A to B is 0.2135 J.

Final answer:

The total work done by the external force in moving the charged particle from equipotential surface A to B is 1.194 J.

Explanation:

The work done by an external non-conservative force in moving a charged particle from one equipotential surface to another can be calculated in two parts. Firstly, we calculate the difference in electrical potential energy between the two points. This can be calculated using the formula ΔU = qΔV, where ΔV = Vb - Va. Following the given question, q = +5.35 x 10^-5 C, ΔV = 7850V - 5650V. Therefore, ΔU = 5.35 x 10^-5(7850 - 5650) = 1.1765 J.

Secondly, we calculate the change in kinetic energy which is given by ΔK = ½m(vb² - va²), where m = 6.90 x10^-2 kg, va = 2 m/s, and vb = 3 m/s. Therefore, ΔK = 0.5 * 6.90 x10^-2 * (3^2 - 2^2) = 0.0175 J.

Summing both gives the total work done by the external force on the particle: W = ΔU + ΔK = 1.1765 J + 0.0175 J = 1.194 J.

Learn more about Physics-Electricity here:

https://brainly.com/question/32059694

#SPJ11

A 20 μF capacitor has previously been charged up to contain a total charge of Q=100 μC on it. The capacitor is then discharged by connecting it directly across a 100kΩ resistor. Calculate the charge remaining on the capacitor exactly 3.00 seconds after being connected to the resistor.

Answers

Answer:

Q= 22.3 μC

Explanation:

Given that

C= 20 μF

Qo= 100 μC

R= 100 kΩ

t= 3 s

T= R C

T= 100 x 1000 x 20 x 10⁻⁶ s

T=2 s

We know that charge on the capacitor is given as

[tex]Q=Q_0e^{\dfrac{-t}{T}}[/tex]

[tex]Q=100\times 10^{-6}\times e^{\dfrac{-3}{2}}[/tex]

Q= 0.0000223 C

Q= 22.3 μC

Final answer:

The charge remaining on the capacitor after 3 seconds of discharging is approximately 22.31 µC, calculated using the formula for exponential decay of charge in an RC circuit.

Explanation:

To calculate the charge remaining on a 20 µF capacitor after 3 seconds of discharging through a 100 kΩ resistor, we'll use the formula for exponential decay of charge in an RC circuit, which is Q(t) = Q0 e-(t/RC), where Q0 is the initial charge, t is the time, and RC is the time constant of the circuit. The time constant (RC) for this circuit can be calculated as (100 × 103 Ω)(20 × 10-6 F) = 2 seconds. Plugging in the given values, we find that Q(3s) = 100 µC × e-(3/2), which after calculation gives a remaining charge of approximately 22.31 µC.

Car 1 goes around a level curve at a constant speed of 65 km/h . The curve is a circular arc with a radius of 95 m . Car 2 goes around a different level curve at twice the speed of Car 1. How much larger will the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration

Answers

Answer:

The radius of the curve that Car 2 travels on is 380 meters.

Explanation:

Speed of car 1, [tex]v_1=65\ km/h[/tex]

Radius of the circular arc, [tex]r_1=95\ m[/tex]

Car 2 has twice the speed of Car 1, [tex]v_2=130\ km/h[/tex]

We need to find the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration. We know that the centripetal acceleration is given by :

[tex]a=\dfrac{v^2}{r}[/tex]

According to given condition,

[tex]\dfrac{v_1^2}{r_1}=\dfrac{v_2^2}{r_2}[/tex]

[tex]\dfrac{65^2}{95}=\dfrac{130^2}{r_2}[/tex]

On solving we get :

[tex]r_2=380\ m[/tex]

So, the radius of the curve that Car 2 travels on is 380 meters. Hence, this is the required solution.

Final answer:

For Car 2 to have the same centripetal acceleration while traveling at twice the speed of Car 1, it must travel on a curve with a radius that is four times larger, which would be 380 meters.

Explanation:

The centripetal acceleration (ac) of a car going around a level curve at a constant speed is given by the formula ac = v2 / r, where v is the speed of the car and r is the radius of the circular path. If Car 1 is traveling at 65 km/h and has a centripetal acceleration on a curve with a radius of 95 m, and Car 2 is traveling at twice the speed of Car 1, we are asked to find the required radius of the curve for Car 2 to maintain the same centripetal acceleration.

To keep the same centripetal acceleration for Car 2, which is moving at twice the speed, the radius r2 must be increased proportionally to the square of the speed ratio. Since Car 2 is traveling at twice the speed, the radius must be increased by a factor of 22, or 4 times larger than that for Car 1. Therefore, if Car 1's radius is 95 m, Car 2's radius needs to be 95 m * 4, which is 380 m.

The information on a one-gallon paint can is that the coverage, when properly applied, is 440 ft2. One gallon is 231 in3. What is the average thickness of the paint in such an application

Answers

Answer:

t= 0.00364 in

Explanation:

Given that

The volume of the paint ,V= 231 in³

The surface area ,A = 440 ft²

We know that

1 ft  = 12 in

That is why

A= 440 x 12 x 12 in²

A= 63360 in²

Lets take the thickness of the paint = t in

We know that

V= A t

[tex]t=\dfrac{V}{A}[/tex]

[tex]t=\dfrac{231}{63360}\ in[/tex]

t= 0.00364 in

Therefore the thickness ,t= 0.00364 in

Final answer:

To find the average thickness of the paint, divide the volume of paint by the area covered. This results in an average thickness of approximately 0.003645 inches, or about 0.000304 feet when the paint is applied as per the can's instructions.

Explanation:

To find the average thickness of the paint applied, we need to calculate the volume of paint used per unit of area covered. The volume of one gallon of paint is 231 cubic inches, and the coverage is 440 square feet. To convert the coverage to square inches, we multiply by the number of square inches in a square foot, which is 144 (12 inches × 12 inches).

The total coverage in square inches is 440 ft2 × 144 in2/ft2 = 63,360 in2. We can then find the average thickness by dividing the volume of paint by the area covered: Thickness (in inches) = Volume (in cubic inches) / Area (in square inches).

This gives us an average thickness of 231 in3 / 63,360 in2, which simplifies to approximately 0.003645 inches. This can also be converted to feet by knowing that 1 inch is equal to 1/12 of a foot, so the average paint thickness is roughly 0.003645/12 feet when applied as instructed on the paint can.

A metal ball with diameter of a half a centimeter and hanging from an insulating thread is charged up with 1010 excess electrons. An initially uncharged identical metal ball hanging from an insulating thread is brought in contact with the first ball, then moved away, and they hang so that the distance between their centers is 20 cm. (a) Calculate the electric force one ball exerts on the other, and state whether it is attractive or repulsive. (Enter the magnitude of the force.) Entry field with correct answer 1.44e-7 N This force is Entry field with correct answer attractive repulsive (b) Now the balls are moved so that as they hang, the distance between their centers is only 5 cm. Naively one would expect the force that one ball exerts on the other to increase by a factor of 42

Answers

Answer:

a)   F = 1.44 10⁻⁷ N, the charges are of the same sign the force is repulsive

b)    F₂ / F₁ = 16

Explanation:

a) When the balls are touched the load is distributed evenly between the two balls, therefore when separating each ball has a load of

          q₁ = q₂ = ½ 10¹⁰ 1.6 10⁻¹⁹ C

          q₁ = q₂ = 0.8 10⁻⁹ C

As the charges are of the same sign the force is repulsive

To calculate the force let's use Coulomb's law

        F = k q₁ q₂ / r²

        F = 8.99 10⁹  0.8 10⁻⁹  0.8 10⁻⁹ / 0.20²

        F = 1.44 10⁻⁷ N

b) Let us seek strength for the distress of

              r₂ = 0.05 m

             F₂ = 8.99  10⁹ 0.8 0.8 10⁻¹⁸ / 0.05²

             F₂ = 2,301 10⁻⁶ N

b) The relationship between these two forces is

            F₂ / F₁ = 23.01 10⁻⁷ / 1.44 10⁻⁷

            F₂ / F₁ = 16

What are the largest optical telescopes in use today? Why do astronomers want their telescopes to be as large as possible?

Answers

The largest telescope currently used is the Gran Telescopio Canarias, (also known as GTC or GRANTECAN). It is 10.4m in diameter, slightly larger than the Keck telescopes in Hawaii.

The telescope observes the visible and infrared light coming from space and has a primary mirror of 10.4 meters, segmented into 36 hexagonal glass-ceramic pieces, 1.9 m between vertices, 8 cm thick, and 470 kg of mass each. The optical system is completed with two mirrors (secondary and tertiary) that form an image in seven focal stations.

Optically the diameter directly influences the magnification of the image. This added to the fact that astronomical objects are quite far away, a telescope of this magnitude allows to obtain more precise images of what is observed in space

The electric flux through a square-shaped area of side 5 cm near a very large, thin, uniformly-charged sheet is found to be 3\times 10^{-5}~\text{N}\cdot\text{m}^2/\text{C}3×10 ​−5 ​​ N⋅m ​2 ​​ /C when the area is parallel to the sheet of charge. Find the charge density on the sheet.

Answers

Answer:

Explanation:

Given

side of square shape [tex]a=5\ cm[/tex]

Electric flux [tex]\phi =3\times 10^{-5}\ N.m^2/C[/tex]

Permittivity of free space [tex]\epsilon_0=8.85\times 10^{-12} \frac{C^2}{N.m^2}[/tex]

Flux is given by

[tex]\phi =EA\cos \theta [/tex]

where E=electric field strength

A=area

[tex]\theta [/tex]=Angle between Electric field and area vector

[tex]E=\frac{\phi }{A\cos (0)}[/tex]

[tex]E=\frac{3\times 10^{-5}}{25\times 10^{-4}\times \cos(0)}[/tex]

[tex]E=0.012\ N/C[/tex]

and Electric field  by a uniformly charged sheet is given by

[tex]E=\frac{\sigma }{2\epsilon_0}[/tex]

where [tex]\sigma[/tex]=charge density

[tex]=\frac{\sigma }{\epsilon_0}[/tex]

[tex]\sigma =0.012\times 8.85\times 10^{-12}[/tex]

[tex]\sigma =2.12\times 10^{-13}\ C/m^2[/tex]    

A wheel rotates clockwise 6 times per second. What will be its angular displacement after 7 seconds? Answer should be rounded to 2 decimal places

Answers

Answer:

The frequency of the wheel is the number of revolutions per second:

f= \frac{N_{rev}}{t}= \frac{10}{1 s}=10 Hz  

And now we can calculate the angular speed, which is given by:

\omega = 2 \pi f=2 \pi (10 Hz)=62.8 rad/s in the clockwise direction.

Explanation:

(6 rotations/sec) x (7 sec) = 42 rots

Each rotation is 360 degrees or 2π radians.

42 rotations = 15,120 degrees

or

84π radians .

A woman exerts a horizontal force of 4 pounds on a box as she pushes it up a ramp that is 10 feet long and inclined at an angle of 30 degrees above the horizontal.Find the work done on the box.

Answers

Answer:

W = 34.64 ft-lbs

Explanation:

given,

Horizontal force = 4 lb

distance of push, d = 10 ft

angle of ramp, θ = 30°

Work done on the box = ?

We know,

W = F.d cos θ

W = 4 x 10 x cos 30°

W = 40 x 0.8660

W = 34.64 ft-lbs

Hence, work done on the box is equal to W = 34.64 ft-lbs

Final answer:

The work done on the box by the woman as she pushes it up the ramp with a horizontal force of 4 pounds is 34.64 foot-pounds, using the work calculation with the cosine of the ramp's angle. So, the final answer is 34.64 foot-pounds.

Explanation:

To calculate the work done on a box by a woman pushing it up a ramp, we need to use the formula Work = Force  * Distance *cos(Ф), where Ф is the angle of the applied force relative to the direction of motion. Since the woman is exerting a horizontal force and the ramp is inclined at a 30-degree angle, the work done is the horizontal component of the force times the distance moved up the ramp.

In this scenario, the force is 4 pounds and the distance is 10 feet. The angle Ф the force makes with the displacement is 30 degrees as the ramp is inclined at this angle to the horizontal, and the force is horizontal. Therefore, the work done is calculated as:

Work = 4 lbs*10 ft *cos(30 degrees)

Using the cosine of 30 degrees (approximately 0.866), the calculation simplifies to:

Work = 4 lbs*10 ft*0.866

Work = 34.64 foot-pounds

A 4.89 μC test charge is placed 4.10 cm away from a large, flat, uniformly charged nonconducting surface. The force on the charge is 321 N. The charge is then moved 2.00 cm farther away from the surface. What is the force on the test charge now?

Answers

Final answer:

The force on the test charge remains the same at 321 N after it is moved farther away because the electric field produced by a large, flat, uniformly charged surface is constant close to the surface.

Explanation:

The question involves calculating the new force on a test charge after it is moved farther away from a charged surface. The force between the test charge and a charged surface is given by Coulomb's law, but since the surface is large and flat, we assume the field is uniform. Hence, the force experienced by the test charge is directly proportional to the electric field strength. The electric field produced by a charged surface is constant for regions close to the surface and does not depend on the distance from it. Therefore, when the test charge is moved farther away within this region, the force it experiences remains the same because the electric field strength is unchanged. In this scenario, after moving the charge from 4.10 cm to a new distance of 6.10 cm (an additional 2.00 cm), the force on the test charge will remain at 321 N.

A runner in a relay race runs 20 m north, turns around and runs south for 30 m, then turns north again and runs 40 m. The entire run took 30 seconds. Draw a sketch. What was the average speed of the runner?

Answers

Answer:

3.33m/s

Explanation:

The total distance that he runs is

30m north + 30m south + 40m north = 100 m

If the entire run takes 30 seconds then the average speed is distance over a unit of time

100 / 30 = 3.33 m/s

You can draw a sketch of a line going north 2 spaces, then going south by 3 spaces, finally going north again by 4 spaces

An astronaut is in space with a baseball and a bowling balL The astronaut gives both objects an equal push in the samedirection. Does the baseball have the same inertia as the bowling ball? Why? Does the baseball have the sameacceleration as the bowling ball from the push? Why? If both balls are traveling at the same speed, does the baseball havethe same momentum as the bowling ball?

Answers

For all solutions the answer is NO. And this is easily intuited because for the three conditions there is the dependence of the mass against some physical property of movement. Both bodies do not have the same mass.

In the case of Inertia, it is understood that it is the tendency of an object to resist change and is mass dependent. The object with greater mass will tend to resist change. Since the mass of the bowling ball is greater than the base ball, the bowling ball has greater inertia compared to the base ball.

For the second part, remember that force, according to Newton's second law, is defined as the product between mass and acceleration, so the bowling ball will accelerate less by having a greater mass.

Finally, momentum is defined as the product between mass and velocity. The mass is greater than one of its objects even though the speeds are the same. Therefore, the momentum of the bowling ball is greater than the momentum of baseball.

In space, the baseball has less inertia, greater acceleration, and less momentum compared to the bowling ball when both receive an equal push, due to their differences in mass.

The question relates to the concept of inertia, acceleration, and momentum in physics. When the astronaut in space gives an equal push to a baseball and a bowling ball, the baseball does not have the same inertia as the bowling ball, because inertia is a measure of an object's resistance to changes in its state of motion and is directly proportional to the object's mass. Since the bowling ball has a greater mass than the baseball, it has more inertia.

As a result, the baseball will have a greater acceleration than the bowling ball from the same force, due to Newton's second law of motion (F=ma), which states that force equals mass times acceleration. If we consider both balls traveling at the same speed, the baseball will not have the same momentum as the bowling ball, because momentum is the product of mass and velocity (p=mv), and the bowling ball has a greater mass.

A fox locates its prey, usually a mouse, under the snow by slight sounds the rodents make. The fox then leaps straight into the air and burrows its nose into the snow to catch its next meal. In your calculations ignore the effects of air resistance. 1) If a fox jumps to a height of 81.0 cm. Calculate the speed at which the fox leaves the snow. (Express your answer to three significant figures.)

Answers

Answer:

The fox leaves the snow at 3.99 m/s

Explanation:

Hi there!

The equation of height and velocity of the fox are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the fox at a time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.81 m/s considering the upward direction as positive)

v = velocity of the fox at a time t.

We know that at the maximum height of the fox, its velocity is zero, so using the equation of velocity we can obtain an expression of v0 in function of t:

v = v0 + g · t

At the maximum height, v = 0

0 = v0 + g · t

Solving for v0:

-g · t = v0

We know the maximum height of the fox, 0.810 m. So, using the equation of height and replacing v0 by (-g · t), we can obtain the time at which the fox is at the maximum height and then calculate the initial velocity:

h = h0 + v0 · t + 1/2 · g · t²

When t is the time at which the fox is at the maximum height, h = 0.810 m and v0 = (-g · t). Let´s consider the ground as the origin of the frame of reference so that h0 = 0.

0.810 m = (-g · t) · t + 1/2 · g · t²

0.810 m = -g · t² +  1/2 · g · t²

0.810 m = - 1/2 · g · t²

t² = -2 · 0.810 m / -9.81 m/s²

t = 0.406 s

And the initial velocity will be:

v0 = -g · t

v0 = -(-9.81 m/s²) · 0.406 s

v0 = 3.99 m/s

The fox leaves the snow at 3.99 m/s

Final answer:

The speed at which the fox leaves the snow is approximately 4.52 m/s.

Explanation:

To calculate the speed at which the fox leaves the snow, we can use the principle of conservation of energy. Since the fox jumps straight up, its initial vertical velocity is zero. The final velocity can be calculated using the equation v^2 = u^2 + 2as, where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the displacement. In this case, the displacement is the height jumped, which is 81.0 cm or 0.81 m. The acceleration is equal to g, the acceleration due to gravity (approximately 9.8 m/s^2). Solving for v, we find that the speed at which the fox leaves the snow is approximately 4.52 m/s.

A phonograph record has an initial angular speed of 37 rev/min. The record slows to 14 rev/min in 1.6 s. What is the record’s average angular acceleration during this time interval? Answer in units of rad/s 2

Answers

Answer:

Acceleration will be [tex]\alpha =-1.50rad/sec^2[/tex]

Explanation:

We have given initial angular velocity [tex]\omega _i=37rpm[/tex]

In radian/sec initial angular velocity will be [tex]\omega _i=\frac{2\times \pi 37}{60}=3.873rad/sec[/tex]

Angular velocity after 1.6 sec is 14 rpm

So final angular velocity [tex]\omega _f=\frac{2\times \pi\times 14}{60}=1.465rad/sec[/tex]

Time t = 1.6 sec

We have to find the angular angular acceleration

From first equation of motion we know that

[tex]\omega _f=\omega _+\alpha t[/tex]

[tex]1.465=3.873+\alpha \times 1.6[/tex]

[tex]\alpha =-1.50rad/sec^2[/tex] here negative sign indicates that motion is deaccelerative in nature

The falling object in Example 2 satisfies the initial value problem dv/dt =9.8−(v/5), v(0) =0. (a) Find the time that must elapse for the object to reach 98% of its limiting velocity. (b) How far does the object fall in the time found in part (a)?

Answers

Answer:

a. [tex]t=19.56 s[/tex]

b.[tex]d=718.34[/tex]

Explanation:

The solution to the differential equation

[tex]\dfrac{dv}{dt}=9.8-\dfrac{v}{5}[/tex]

is the exponential function

[tex]v(t)=ce^{-0.2t}+49[/tex]

and we find [tex]c[/tex] from the initial condition [tex]v(0)=0:[/tex]

[tex]0=ce^{-0.2*0}+49\\\\0=c+49\\\\c=-49[/tex]

Therefore, we have

[tex]v(t)=-49e^{-0.2t}+49[/tex]

[tex]\boxed{ v(t)=49(1-e^{-0.2t})}[/tex]

Part A:

The maximum velocity that the object can reach is 49 (which the maximum value [tex]v(t)[/tex] can have).

Now, 98% of 49 is 48.02; therefore,

[tex]48.02=49(1-e^{-0.2t})[/tex]

[tex]0.98=1-e^{-0.2t}[/tex]

[tex]e^{-0.2t}=0.02[/tex]

[tex]\boxed{t=19.56 s}[/tex]

Part B:

The distance traveled is the integral of the speed:

[tex]d=\int_0^{19.56}v(t)*dt[/tex]

[tex]d=\int^{19.56}_0 {49(1-e^{-0.2t})} \, dt[/tex]

[tex]d=49[t+5e^{-0.2t}]_0^{19.56}[/tex]

[tex]\boxed{d=718.34}[/tex]

Final answer:

To find the time that must elapse for the object to reach 98% of its limiting velocity, we need to solve the differential equation. We can then find the distance the object falls by integrating the velocity function with respect to time.

Explanation:(a) Finding the time to reach 98% of the limiting velocity

To find the time it takes for the object to reach 98% of its limiting velocity, we need to solve the differential equation. First, we separate the variables by writing it as:

dv / (9.8 - (v/5)) = dt

Next, we integrate both sides:

∫ (1 / (9.8 - (v/5))) dv = ∫ dt

After evaluating the integrals, we can solve for v:

v = 49 - 49e^(-t/5)

Substituting v with 0.98 times the limiting velocity (which is 49), we can solve for t:

49 - 49e^(-t/5) = 0.98 * 49

Solving this equation will give us the time it takes for the object to reach 98% of its limiting velocity.

(b) Finding the distance the object falls

To find the distance the object falls, we need to integrate the velocity function, v, with respect to time:

∫ v dt

By evaluating the integral, we can calculate the distance the object falls in the time found in part (a).

Learn more about Differential equations here:

https://brainly.com/question/33814182

#SPJ3

A 0.1 m by 0.1 m sheet of cardboard is placed in a uniform electric field of 10 N/C. At first, the plane of the sheet is oriented perpendicular to the electric field vector so that the electric flux through the sheet is 0.01 N-m2/C. By what angle do you need to rotate the sheet to reduce the electric flux by 1/2?

Answers

Answer:

The angle is 89°.

Explanation:

Given that,

Electric field = 10 N/C

Electric flux = 0.01 N-m²/C

Area [tex]A=\pi\times(0.1)^2[/tex]

We need to calculate the angle

Using formula of electric flux

[tex]\phi=EA\cos\theta[/tex]

[tex]\cos\theta=\dfrac{\phi}{EA}[/tex]

Where, E = electric field

[tex]\phi[/tex] = electric flux

A = area

Put the value into the formula

[tex] \cos\theta=\dfrac{\dfrac{0.01}{2}}{10\times\pi\times(0.1)^2}[/tex]

[tex]\theta=\cos^{-1}(0.01592)[/tex]

[tex]\theta=89.0^{\circ}[/tex]

Hence, The angle is 89°.

The angle required to rotate the sheet to reduce the electric flux by 1/2 is 89 degrees.

What is electric flux?

The number of electric lines that interact the area of a given object or space.

It can be given as,

[tex]\phi=ES\cos \theta[/tex]

Here, [tex]E[/tex] is the magnitude of electric field, [tex]S[/tex] is the area of surface and [tex]\theta[/tex] is the angle between electric field and perpendicular.

Given information-

The dimensions of sheet of cardboard is 0.1 by 0.1.

The sheet is placed between the uniform electricity field of 10 N/C.

Put the values in the above formula as,

[tex]\dfrac{0.01}{2} =10\times\pi\times{0.1^2}\times\cos \theta\\\theta=cos^-(0.01592)\\\theta=89^o[/tex]

Hence the angle required to rotate the sheet to reduce the electric flux by 1/2 is 89 degrees.

Learn more about the electric flux here;

https://brainly.com/question/26289097

Other Questions
Suppose you can read the sequence of bases on only one strand of the double helix. What would you use to figure out the sequence on the other strand?a.base pairing rules b.central dogma c.x-ray crystallography d.sugar pairing rules Use what you know about decimals orfractions to explain why (0.2)(0.002)=0.0004. A 27.3 g marble sliding to the right at 21.0 cm/s overtakes and collides with a 11.7 g marble moving in the same direction at 12.6 cm/s. After the collision, the 11.7 g marble moves to the right at 23.7 cm/s. Find the velocity of the 27.3 g marble after the collision. Answer in units of cm/s. Based on research on cultural differences in the Fundamental Attribution Error, explain how culture (i.e., collectivist versus individualist) influences the type of attributions people tend to make. In your answer, specify which type of culture would be more likely to make a dispositional vs. situational attribution for Lucys bad grade. Given your answer, which culture is more likely to make the Fundamental Attribution Error in this situation? Enzo is making a scale drawing of the rectangle below. A rectangle has a length of 8 centimeters and width of 5 centimeters. Enzo says that he can draw an enlarged rectangle that is 16 centimeters by 13 centimeters. Which explains whether Enzo is correct? Enzo is correct because he used a factor of 2 to enlarge the rectangle. Enzo is correct because he doubled one dimension and added the two lengths to get the other dimension. Enzo is not correct because the enlarged rectangle should be 16 centimeters by 5 centimeters. Enzo is not correct because he did not multiply the length and width by the same factor. . Pratt was able to see the issue with student loans after she personally declared bankruptcy. Investors she spoke with in Silicon Valley thought parents should just pay off the loans. Their differences in view can be explained because of the __________ theory.a. deontologicalb. utilitarian ethicalc. casuist ethicald. moral relativism Defeating authentication follows the methodopportunitymotive paradigm. 1. Discuss how these three factors apply to an attack on authentication? Would a driver navigating an upcoming turn be an example of someone doing dynamic balance? An examiner who discovers unequal movement or uneven gluteal skinfolds during the Ortolani maneuver does what? The creation of __________ with digital media allows for large quantities of numerical or textual data to be searched online by data points and trends. A. reference materials B. orientations C. comments and critiques D. summaries E. narratives Ralphs shirt company sells t-shirts for $7.50 each with a flat rate of $10 for shipping. Franks t-shirt company sells t-shirts for $10 each with free shipping. Think about your own stressors. Give one examples each of Physical, Emotional and environmental stressor. Then explain how you would manage each of them to avoid becoming "overly stressed" Many satellites orbit Earth at maximum altitudes above Earth's surface of 1000 km or less. Geosynchronous satellites, however, orbit at an altitude of 35790 km above Earth's surface. How much more energy is required to launch a 410 kg satellite into a geosynchronous orbit than into an orbit 1000 km above the surface of Earth? Name the steps of meiosis shown in the diagrams below. Compared with ionic compounds, molecular compounds have lower Hi!!!! Please help!! Desperately need biology help! An ice cube melts and becomes a liquid. What happened to the particles that made up the ice cube? A. The mass of the ice cube's particles decreased. B. The amount of potential energy in the ice cube's particles increased. C. The size of the ice cube's particles decreased. D. The amount of kinetic energy in the ice cube's particles increased. What kind of animals are best suited to life in a desert? A. Animals that estimate during hot weather B. Animals that nest in tall trees C. Animals that hibernate during winter D. Animals that have thick layer of blubber or fur Do you believe that America is as strong now as it was prior to the bombing of Pearl Harbor? (On a timer, lots of points!)Read this excerpt from The Song of Wandering Aengus by William Butler Yeats. And walk among long dappled grass, And pluck till time and times are done, The silver apples of the moon, The golden apples of the sun. Which pattern describes the rhyme scheme of this stanza? XAXB XXAA XAXA XAAX