Answer:
P = 1/8
Explanation:
The wave function of a particle in a one-dimensional box is given by:
[tex] \psi = \sqrt \frac{2}{L} sin(\frac{n \pi x}{L}) [/tex]
Hence, the probability of finding the particle in the one-dimensional box is:
[tex] P = \int_{x_{1}}^{x_{2}} \psi^{2} dx [/tex]
[tex] P = \int_{x_{1}}^{x_{2}} (\sqrt \frac{2}{L} sin(\frac{n \pi x}{L}))^{2} dx [/tex]
[tex] P = \frac{2}{L} \int_{x_{1}}^{x_{2}} (sin^{2}(\frac{n \pi x}{L}) dx [/tex]
Evaluating the above integral from x₁ = 0 to x₂ = L/8 and solving it, we have:
[tex] P = \frac{2}{L} [\frac{L}{16} (1 - 4\frac{sin(\frac{n \pi}{4})}{n \pi})] [/tex]
[tex] P = \frac{1}{8} (1 - 4\frac{sin(\frac{n \pi}{4})}{n \pi}) [/tex]
Solving for n=4:
[tex] P = \frac{1}{8} (1 - 4\frac{sin(\frac{4 \pi}{4})}{4 \pi}) [/tex]
[tex] P = \frac{1}{8} (1 - \frac{sin (\pi)}{\pi}) [/tex]
[tex] P = \frac{1}{8} [/tex]
I hope it helps you!
The total probability of finding a particle in this one-dimensional box is [tex]\frac{1}{8}[/tex]
Given the following data:
Energy level, n = 4x = 0x = [tex]\frac{L}{8}[/tex]To determine the total probability of finding a particle in a one-dimensional box:
A particle in a one-dimensional box describes the translational motion of a particle that is trapped inside an infinitely deep well, from which it is unable to escape.
Mathematically, the wave function of a particle in a one-dimensional box is given by this formula:
[tex]\psi = \sqrt{\frac{2}{L} } sin\frac{n\pi}{L} x[/tex] ...equation 1.
Where:
[tex]\psi[/tex] is the wave function.L is the length of a box.x is the displacement.In a one-dimensional box, the probability of finding a particle is given by the formula:
[tex]P=\int\limits^{x_2}_{x_1} {\psi^2} \, dx[/tex] ...equation 2.
Substituting eqn. 1 into eqn. 2, we have:
[tex]P=\int\limits^{x_2}_{x_1} {(\sqrt{\frac{2}{L} } sin\frac{n\pi}{L} x)^2} \, dx \\\\P = \frac{2}{L} \int\limits^{x_2}_{x_1} {( sin^2(\frac{n\pi}{L} x))} \, dx\\\\P=\frac{2}{L} [\frac{L}{16} (1-4(\frac{sin\frac{n\pi}{4} }{n\pi} ))]\\\\P=\frac{1}{8} (1-4(\frac{sin\frac{n\pi}{4} }{n\pi} ))[/tex]
Substituting the value of n, we have:
[tex]P=\frac{1}{8} (1-4(\frac{sin\frac{4\pi}{4} }{4\pi} ))\\\\P=\frac{1}{8} (1-(\frac{sin\pi }{\pi} ))\\\\P=\frac{1}{8} (1-0)\\\\P=\frac{1}{8}[/tex]
Read more: https://brainly.com/question/14593563
A 500 mL hypertonic saline solution is labeled as consisting of 5.21 % w/w NaCl. Given that the density of salt water is 1.02 g/mL, what is the molarity of the saline solution? Molar mass of NaCl = 58.44 g/mol.
Answer: The molarity of saline solution is 0.909 M
Explanation:
We are given:
5.21 w/w % NaCl
This means that 5.21 grams of NaCl is present in 100 grams of solution
To calculate mass of a substance, we use the equation:
[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]
Density of solution = 1.02 g/mL
Mass of solution = 100 g
Putting values in above equation, we get:
[tex]1.02g/mL=\frac{100g}{\text{Volume of solution}}\\\\\text{Volume of solution}=\frac{100g}{1.02g/mL}=98.04mL[/tex]
To calculate the moalrity of solution, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}[/tex]
Given mass of NaCl = 5.21 g
Molar mass of NaCl = 58.44 g/mol
Volume of solution = 98.04 mL
Putting values in above equation, we get:
[tex]\text{Molarity of solution}=\frac{5.21\times 1000}{58.44g/mol\times 98.04}\\\\\text{Molarity of solution}=0.909M[/tex]
Hence, the molarity of saline solution is 0.909 M
What can you conclude about the relative magnitudes of the absolute values of ΔHsoluteΔHsolute and ΔHhydrationΔHhydration, where ΔHsoluteΔHsolute is the heat associated with separating the solute particles and ΔHhydrationΔHhydration is the heat associated with dissolving the solute particles in water?
The magnitude of ΔHsolute is often larger than the magnitude of ΔHhydration in general.
Explanation:The magnitudes of ΔHsolute and ΔHhydration can vary depending on the solute and the solvent being used. However, in general, the magnitude of ΔHsolute is often larger than the magnitude of ΔHhydration.
ΔHsolute represents the energy required to separate the solute particles, which typically involves breaking intermolecular forces. This process is usually endothermic and requires more energy compared to the process of dissolving the solute in water. On the other hand, ΔHhydration represents the energy released when solute particles are surrounded by water molecules during dissolution, which is often exothermic but smaller in magnitude compared to ΔHsolute.
For example, when table salt (NaCl) dissolves in water, the magnitude of ΔHsolute required to break the ionic bonds between Na+ and Cl- ions is significantly larger than the magnitude of ΔHhydration as water molecules surround the separated ions.
Learn more about Enthalpy of solution and hydration here:https://brainly.com/question/35917789
#SPJ3
How is it possible for a protein to change over 70% of its amino acids and still fold in the same way?
The complete question is
Comparison of a homeodomain protein from yeast and Drosophila shows that only 17 of its 60 amino acids are identical. How is it possible for a protein to change over 70% of its amino acids and still fold in the same way?
Answer:
Many different strings of the amino acid can give rise to the identical protein folds. The amino acid differences between the Drosophila and homeodomain proteins from yeast are the functional proteins which do not change their structure and function.
There is a several amount of folding required which can cause change in the protein structure.
There is a basic functional proteins common in both the organism which do not change its structure and function.
Electrolyte solutions conduct electricity because electrons are moving through the solution. true or false g
Answer: False
Explanation: Electrolyte are good conductors of electricity because they contain ions which are able to move about
How does the aufbau principle, in connection with the periodic law, lead to the format of the periodic table?
Final answer:
The Aufbau principle leads to the format of the periodic table by arranging elements based on their electron configurations and the number of valence electrons they have.
Explanation:
The Aufbau principle, in connection with the periodic law, leads to the format of the periodic table by arranging elements based on their electron configurations and the number of valence electrons they have. The periodic table is organized in a way that groups elements with similar properties in the same vertical columns, also known as groups. This arrangement follows the filling of subshells with electrons according to the Aufbau principle.
A person uses 770 kcal on a long hike. Calculate the energy used for the hike in each of the following energy units.
What is the energy in joules?
Express the energy in joules to two significant figures.
What is the energy in kilojoules?
Express the energy in kilojoules to two significant figures.
Explanation:
1 Cal of energy is equivalent to 4.184 Joules.
A.
770Cal of energy = 3221.680 joules
Therefore, 780kCal of energy = 3221680 Joules.
B.
3200000 Joules (in 2 s.f).
C.
I000 joules = 1 kJoule
3221680 joules = 3221.689 kJoules.
D.
3200 kJ (in 2 s.f).
1) The energy in joules is equal to 3221680 Joules.
2) The energy in joules to two significant figures is 3200000.
3) The energy in kilojoules is 3221.689 KJ.
4) The energy in kilojoules to two significant figures is 3200 KJ.
What are significant figures?Significant figures can be used to generate numbers that can be written in the form of digits. We can find the number of significant digits by counting the values beginning from the first non-zero digit placed on the left.
The significant figures of a given number can be described as those significant digits, which deliver the meaning with respect to its accuracy.
Given the energy used for the bike = 770 kcal.
We know that 1 cal = 4.184 J
The energy in Joules = 770 × 1000 × 4.184 = 3221680 J
The energy in joules to two significant figures is equal to 3200000.
The energy in kilojoules = 3221689/1000 = 3221.689 KJ
The energy in kilojoules to two significant figures is equal to 3200 KJ.
Learn more about significant figures, here:
brainly.com/question/29153641
#SPJ2
The vapor pressure of benzene (C6H6) is 73.0 mm Hg at 25 °C. What is the vapor pressure of a solution consisting of 179 g of benzene and 0.217 mol of a nonvolatile nonelectrolyte?
Answer:
Vapor pressure of solution is 66.7 mmHg
Explanation:
Colligative property about vapor pressure lowering. That's we must use to solve this problem.
Formula is: ΔP = P° . Xm
P° is Vapor pressure of pure solvent
ΔP = P° - P' (vapor pressure of solution)
Xm = mole fraction of solute (mol of solute / total moles)
Let's determine the total moles, firstly.
Total moles = moles of solute + moles of solvent
Moles of solute → 0.217 mol
Moles of solvent → 179 g / molar mass of benzene
179 g / 78 g/mol = 2.29 mol
2.29 mol + 0.217 mol = 2.507 moles
Xm for solute = 0.217 mol / 2.507 mol = 0.0865
Let's replace the data in the formula:
73 mmHg - P' = 73 mmHg . 0.0865
P' = - (73 mmHg . 0.0865 - 73mmHg)
P' = 66.7 mmHg
If particles have wavelike motion, why don’t we observe that motion in the macroscopic world?
Answer:
The usual 'particles' that we see in the macroscopic world (let's call them objects), are big and massive. This usually means that they have high characteristic frequencies => low wavelengths.Explanation: umm on google i found
What mass of salt (NaCl) should you add to 1.46 L of water in an ice-cream maker to make a solution that freezes at -14.4 ∘C? Assume complete dissociation of the NaCl and a density of 1.00 g/mL for water and use Kf=1.86∘C/m.
Final answer:
To calculate the mass of NaCl needed to lower the water's freezing point to -14.4°C, we use the freezing point depression formula with the known freezing point depression constant for water. After finding the molality, we can calculate the required mass of NaCl using its molar mass.
Explanation:
The student has asked about calculating the mass of salt (NaCl) needed to add to a specific volume of water to achieve a desired freezing point depression for making ice cream. This involves a concept called freezing point depression, which is a colligative property and is part of the solution chemistry topics in high school.
To calculate the mass of NaCl required to lower the freezing point of water to -14.4°C, we can use the freezing point depression equation ΔT = Kf × m × i, where ΔT is the freezing point depression, Kf is the freezing point depression constant of the solvent (water in this case, which is 1.86°C/m), m is the molality of the solution, and i is the van 't Hoff factor, which is 2 for NaCl due to its complete dissociation into Na+ and Cl- ions.
To find the molality (m), we rearrange the equation to m = ΔT / (Kf × i). With ΔT being 14.4°C (since water normally freezes at 0°C and we want -14.4°C), Kf is 1.86°C/m, and i is 2, we get m = 14.4°C / (1.86°C/m × 2) = 3.87 mol/kg. The mass of NaCl needed can then be calculated by converting molality to moles and then to grams using the molar mass of NaCl (58.44 g/mol).
Final answer:
Calculate the molality using the freezing point depression formula, convert to moles, and then to mass, resulting in 330 grams of NaCl needed to lower the freezing point of 1.46L of water to -14.4°C.
Explanation:
To find the mass of salt (NaCl) to be added to water in an ice-cream maker to achieve a freezing point depression to -14.4° C, we will use the freezing point depression formula ΔTf = i * Kf * m, where ΔTf is the freezing point depression, i is the van't Hoff factor (number of particles the solute breaks into), Kf is the cryoscopic constant of the solvent (water), and m is the molality of the solution.
For NaCl, which dissociates into Na+ and Cl-, the van't Hoff factor (i) is 2. Since 1L of water is approximately 1000g and the density of water is 1.00 g/mL, we have 1.46 kg of water. The freezing point depression (freezing point change) ΔTf is 14.4° C because pure water freezes at 0° C and we're freezing at -14.4° C. Kf for water is given as 1.86°C/m.
Solving the equation for m (molality), we have m = ΔTf / (i * Kf) = 14.4° C / (2 * 1.86°C/m) = 3.87 m (molality). To convert molality to moles of salt, we multiply by the mass of the solvent in kg: 3.87 m * 1.46 kg = 5.65 moles of NaCl. The molar mass of NaCl is approximately 58.44 g/mol, so the mass of NaCl needed is 5.65 moles * 58.44 g/mol = 330 grams.
Determine the vapor pressure of a solution at 55 °C that contains 34.2 g NaCl in 375 g of water. The vapor pressure of pure water at 55 °C is 118.1 torr. The van't Hoff factor for NaCl is 1.9
Answer:
Vapor pressure of solution = 111.98 Torr
Explanation:
Colligative property to apply: Lowering vapor pressure
P° - P' = P° . Xm . i
P°, vapor pressure of pure solvent
P', vapor pressure of solution
Xm, mole fraction of solute
i, Van't Hoff factor.
Let's determine the Xm.
Moles of solute = mass / molar mass → 34.2 g / 58.45 g/mol = 0.585 moles
Moles of solvent = 375 g / 18 g/mol = 20.83 moles
Mole fraction = 0.585 mol / 0.585 mol + 20.83 mol → 0.0273
Let's replace the data in the formula:
118.1 Torr - P' = 118.1 Torr . 0.0273 . 1.9
118.1 Torr - 6.12 Torr = P'
Vapor pressure of solution = 111.98 Torr
You need to determine the specific gravity of a sample. After putting the sample on a lab scale, you know it has a mass of 85 grams. Using a graduated cylinder, you know it has a volume of 9.5 mL. What is the specific gravity of the sample?
Answer:
Specific gravity of the sample = 8.947
Explanation:
Specific gravity of a substance is defined as the density of that substance divided by the density of water.
Density of water = 1000g/l
Density of substance = mass/volume
= 85/9.5 x 10^-3
= 8947.37 g/l
SG = 8947.37/1000
= 8.947
Final answer:
To calculate the specific gravity of a sample, divide its density by the density of water. With a given mass of 85 grams and a volume of 9.5 mL, the sample's density is 8.9474 g/mL. Consequently, the specific gravity is 8.9474, as it's a dimensionless ratio.
Explanation:
The specific gravity of a sample is the ratio of the density of that sample to the density of a reference material, usually water. To determine the specific gravity of the sample given, you need to first calculate its density using the mass and volume. The mass of the sample is given as 85 grams and the volume is given as 9.5 mL.
First, calculate the density of the sample using the formula density = mass/volume. Density = 85 g / 9.5 mL = 8.9474 g/mL. Since the density of water at 4 degrees Celsius (which is typically used as the reference density) is 1 g/mL, the specific gravity of the sample is the ratio of the sample's density to that of water. Therefore, specific gravity = sample density / water density = 8.9474 g/mL / 1 g/mL = 8.9474. This means that the specific gravity of the sample is 8.9474, which is a dimensionless number.
Determine the electric field (magnitude and direction) at the point A (8.00 nm, 6.00 nm) caused by a particle located at the origin and carrying a charge of 7.00 μC .
Answer:
E1 = 9.83 x [tex]10^{20}[/tex] [tex]NC^{-1}[/tex]
E2 = 1.748 x [tex]10^{21}[/tex] [tex]NC^{-1}[/tex]
Explanation:
E1 = k Q/r2 = 8.99 x [tex]10^{9}[/tex] x 7 x [tex]10^{-6}[/tex] / 8 x [tex]10^{-9}[/tex] x 8 x [tex]10^{-9}[/tex] = 9.83 x [tex]10^{20}[/tex] [tex]NC^{-1}[/tex]
E2 = k Q/r2 = 8.99 x [tex]10^{9}[/tex] x 7 x [tex]10^{-6}[/tex] / 6 x [tex]10^{-9}[/tex] x 6 x [tex]10^{-9}[/tex] = 1.748 x [tex]10^{21}[/tex] [tex]NC^{-1}[/tex]
The direction of the electric field will be from E1 to E2...
In a concentrated solution there is ____.a. no solvent c. a small amount of soluteb. a large amount of solute d. no solute
Answer:a large amount of solute
Explanation:
A solution is composed of a solute and a solvent. If the amount of solute is greater than that of solvent, the solution is concentrated. A concentrated solution contains quite a large amount of solute while a dilute solution contains less amount of solute. This is the difference between diluted and concentrated solutions.
Answer:
Answer:a large amount of solute
Explanation:
A solution is composed of a solute and a solvent. If the amount of solute is greater than that of solvent, the solution is concentrated. A concentrated solution contains quite a large amount of solute while a dilute solution contains less amount of solute. This is the difference between diluted and concentrated solutions.
Explanation:
Though Neon is a relatively small atom with a relatively high nuclear charge, it is difficult to add an electron to a neon atom. Which of the following is the best explanation of this phenomenon?
Answer:
hjghjkhjkkhgjh
Explanation:
Consider the market for peanut butter. If there is a decrease in the price of deli turkey slices (a
substitute in consumption for peanut butter) along with a decrease in the price of peanut brittle
(a substitute in production for peanut butter), the
A) equilibrium quantity of peanut definitely decreases.
B) equilibrium quantity of peanut butter definitely increases.
C) equilibrium price of peanut butter definitely falls.
D) equilibrium price of peanut butter definitely rises.
E) equilibrium price of peanut butter might rise or fall
Answer:
The correct answer is option C) "equilibrium price of peanut butter definitely falls".
Explanation:
The equilibrium price of a product is the market price established at a point where the quantity of products is equal to the quantity demanded by the consumers. In this case, the market of peanut butter is facing the decrease in the price of two substitutes of peanut butter: deli turkey slices and peanut brittle. As a result, the equilibrium price of peanut butter definitely falls since the quantity demanded by the consumers will certainly fall.
Final answer:
A decrease in the price of deli turkey slices and peanut brittle affects the demand and supply for peanut butter differently, making the final impact on the market for peanut butter ambiguous without further information.
Explanation:
The question considers the effects of changes in the prices of substitute goods in consumption (deli turkey slices) and production (peanut brittle) on the market for peanut butter. A decrease in the price of deli turkey slices, a substitute in consumption, would lead to consumers substituting away from peanut butter towards deli turkey slices, thereby decreasing the demand for peanut butter. Conversely, a decrease in the price of peanut brittle, a substitute in production, might signal that manufacturers could switch to producing more peanut brittle as it becomes more profitable, potentially decreasing the supply of peanut butter if resources are diverted. Consequently, the equilibrium quantity of peanut butter might increase or decrease, depending on the relative magnitudes of the shifts in supply and demand, while the equilibrium price might rise or fall for similar reasons. Therefore, without additional information on the extents of these changes, the final impact on the equilibrium price and quantity of peanut butter cannot be definitively determined, making option E the correct answer.
In a first order decomposition in which the rate constant is 0.0808 sec-1, how long will it take (in minutes) until 0.358 mol/L of the compound is left, if there was 0.52 mol/L at the start? (give answer to 3 decimal places)?
Answer:
t = 4.62 sec
Explanation:
For every first order reaction the rate constant K is given as
[tex]k =(\frac{2.303}{t} )log\frac{[A_{o} ]}{[A]}[/tex]
[tex][A_{o} ] = initial concentration = 0.52\frac{mol}{L}[/tex]
[tex][A] =final concentration = 0.358 \frac{mol}{L}[/tex]
[tex]K = 0.0808 sec^{-1}[/tex]
[tex]t = (\frac{2.303}{K} ) log (\frac{[A_{o} ]}{[A]} )[/tex]
[tex]= (\frac{2.303}{0.0808} )log (\frac{0.52}{0.358} )[/tex]
t = 4.62 sec
Answer:0.0771mins
Explanation:The first order rate law eqn =Ca=Caoe^-kt
Ca=final mass remaining
Cap=initial mass
K=rate or decay constant
t=time
e=exponential
ca=0.358
cao=0.52
K=0.0808/sec
Substituting,we have
0.358=0.52e^-0.0808t
0.358/0.52=e^-0.0808t
0.688=e^-0.0808t
Taking naturaing logarithm of both sides(ln of both sides)
ln(0.688)=-0.0808t
-0.3739=-0.0808t
t=0.3739/0.0808
t=4.628secs
In mins,4.628/60=0.0771mins.
A gas mixture contains 3.0 mol of hydrogen (H2) and 7.3 mol of nitrogen (N2). The total pressure of the mixture is 304 kPa. What is the mole fraction and partial pressure of H2?
Answer:
Mole fraction H₂ = 0.29
Partial pressure of H₂ → 88.5 kPa
Explanation:
You need to know this relation to solve this:
Moles of a gas / Total moles = Partial pressure of the gas / Total pressure
Total moles = 3 mol + 7.3 mol → 10.3 moles
Mole fraction H₂ → 3 moles / 10.3 moles = 0.29
Mole fraction = Partial pressure of the gas / Total pressure
0.29 . 304 kPa = Partial pressure of H₂ → 88.5 kPa
Final answer:
The mole fraction of H₂ in the gas mixture is 0.291 and the partial pressure of H₂ is 88.28 kPa.
Explanation:
In order to find the mole fraction of H₂, we need to first calculate the total number of moles in the mixture. The total moles will be the sum of the moles of hydrogen and nitrogen: 3.0 mol + 7.3 mol = 10.3 mol.
The mole fraction of H₂ is calculated by dividing the moles of H₂ by the total moles in the mixture: 3.0 mol / 10.3 mol = 0.291. This means that the mole fraction of H₂ is 0.291.
The partial pressure of H₂ can be calculated using Dalton's Law of Partial Pressures. The total pressure of the mixture is given as 304 kPa, which is equal to the sum of the partial pressures of the gases: PH₂ + PN₂ = 304 kPa. We want to find the partial pressure of H₂, so we can rearrange the equation: PH₂ = 304 kPa - PN₂.
Now we need to find the partial pressure of N₂. The mole fraction of N₂ can be calculated as 1 - mole fraction of H₂: XN₂ = 1 - 0.291 = 0.709. We can then use this mole fraction and the total pressure to find the partial pressure of N₂: PN₂ = XN₂ * total pressure = 0.709 * 304 kPa = 215.72 kPa. With the partial pressure of N₂ known, we can plug it back into the rearranged equation for PH₂: PH₂ = 304 kPa - 215.72 kPa = 88.28 kPa.
Consider two acids: CH3CO2H (acetic acid, pKa = 4.8) and C6H5CO2H (benzoic acid, pKa = 4.2). Which acid is the stronger acid? Select the single best answer.
a. benzoic acid
b. acetic acid
Answer:
Benzoic acid
Explanation:
The strength of an acid is principally a measure of its dissociative capabilities in aqueous solutions. While strong acids dissociate completely in solution, weak acids dissociates only partially.
The relative strength of an acid can be obtained from its pKa value. The pKa value is the negative logarithm of the concentration of the Ka value.
Stronger acids have a pKa value usually negative. This is a pointer to the fact that the lower the pKa value, the stronger the strength of the acid in question.
Relatively therefore, Benzoic acid is stronger than acetic acid because it has a lesser value for pKa
The strength of an acid is determined by its pKa value, with lower values indicating stronger acids. Therefore, between CH3CO2H (acetic acid, pKa = 4.8) and C6H5CO2H (benzoic acid, pKa = 4.2), benzoic acid is the stronger acid.
Explanation:When comparing acids, the strength of an acid is determined by its pKa value. The lower the pKa value, the stronger the acid is. In this case, the two acids that are being compared are CH3CO2H (acetic acid, pKa = 4.8) and C6H5CO2H (benzoic acid, pKa = 4.2). Therefore, given that the pKa of benzoic acid is lower than that of acetic acid, we can conclude that benzoic acid is the stronger acid. To summarize, the best answer to the question 'Which acid is the stronger acid, CH3CO2H (acetic acid) or C6H5CO2H (benzoic acid)?' is option a. benzoic acid.
Learn more about Acid Strength here:https://brainly.com/question/35878004
#SPJ3
) If 23 g of FeCl2 reacts with 41 grams of Na3PO4, what is the limiting reagent? How much NaCl can be formed?
Answer: The limiting reagent is iron (II) chloride and the mass of sodium chloride formed is 21.2 grams
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
For iron (II) chloride:Given mass of iron (II) chloride = 23 g
Molar mass of iron (II) chloride = 126.8 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of iron (II) chloride}=\frac{23g}{126.8g/mol}=0.181mol[/tex]
For sodium phosphate:Given mass of sodium phosphate = 41 g
Molar mass of sodium phosphate = 164 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of sodium phosphate}=\frac{41g}{164g/mol}=0.25mol[/tex]
The chemical equation for the reaction of iron (II) chloride and sodium phosphate follows:
[tex]3FeCl_2+2Na_3PO_4\rightarrow 6NaCl+Fe_3(PO_4)_2[/tex]
By Stoichiometry of the reaction:
3 moles of iron (II) chloride reacts with 2 moles of sodium phosphate
So, 0.181 moles of iron (II) chloride will react with = [tex]\frac{2}{3}\times 0.181=0.1206mol[/tex] of sodium phosphate
As, given amount of sodium phosphate is more than the required amount. So, it is considered as an excess reagent.
Thus, iron (II) chloride is considered as a limiting reagent because it limits the formation of product.
By Stoichiometry of the reaction:
3 moles of iron (II) chloride produces 6 mole of sodium chloride.
So, 0.181 moles of iron (II) chloride will produce = [tex]\frac{6}{3}\times 0.181=0.362moles[/tex] of sodium chloride.
Now, calculating the mass of sodium chloride from equation 1, we get:
Molar mass of sodium chloride = 58.5 g/mol
Moles of sodium chloride = 0.362 moles
Putting values in equation 1, we get:
[tex]0.362mol=\frac{\text{Mass of sodium chloride}}{58.5g/mol}\\\\\text{Mass of sodium chloride}=(0.362mol\times 58.5g/mol)=21.2g[/tex]
Hence, the limiting reagent is iron (II) chloride and the mass of sodium chloride formed is 21.2 grams
To determine the limiting reagent between FeCl2 and Na3PO4, the masses of the reactants are converted to moles and compared according to the stoichiometry of the balanced chemical equation. The reactant that produces the least amount of product is the limiting reagent, and using this information, the mass of NaCl produced can be calculated.
Explanation:The student is asking which reactant is the limiting reagent in the reaction between FeCl2 and Na3PO4, and the amount of NaCl that can be formed as a result. To solve this, we must first balance the chemical equation and then convert the masses of the reactants to moles. After that, we use stoichiometry to compare the mole ratios and identify the limiting reactant. Lastly, we calculate the mass of NaCl produced by the reaction, based on the limiting reactant's moles.
Let's balance the equation: FeCl2 + Na3PO4 → Fe3(PO4)2 + NaCl. We don't have the balanced equation here, but typically, you'd see NaCl being produced alongside iron(III) phosphate. To compute the moles of each reactant, we use their molar masses (FeCl2 = 126.75 g/mol, Na3PO4 = 163.94 g/mol) and determine the mole ratio according to the balanced equation. The smaller mole ratio indicates the limiting reagent. Using the stoichiometry of the balanced reaction, we then calculate the amount of NaCl that can be formed.
Learn more about Limiting Reagent here:https://brainly.com/question/11848702
#SPJ3
Predict which member of each pair will be more acidic. Explain your answers. (a) methanol or tert-butyl alcohol (b) 2-chloropropan-1-ol
Answer:
A. Methanol
B. 2-chloropropan-1-ol
C. 2,2-dichloroethanol
D. 2,2-difluoropropan-1-ol
Explanation:
Primary alcohols are stronger acids than secondary alcohols which are stronger than tertiary alcohols.
This trend is so because of the stability of the alkoxide ion formed(stabilising the base, increases the acidity). A more stabilised alkoxide ion is a weaker conjugate base (dissociation of an acid in water).
By electronic factors, When there are alkyl groups donating electrons, the density of electrons on th O- will increase a d thereby make it less stable.
By stearic factors, More alkyl group bonded to the -OH would mean the bulkier the alkoxide ion which would be harder to stabilise.
Down the group of the periodic table, basicity (metallic character) decreases as we go from F– to Cl– to Br– to I– because that negative charge is being spread out over a larger volume that is electronegativity decreases down the group.
Electronegative atoms give rise to inductive effect and a decrease in indutive effects leads to a decrease in acidity. Therefore an Increasing distance from the -OH group lsads to a decrease in acidity.
From above,
A. Methanol
B. 2-chloropropan-1-ol
C. 2,2-dichloroethanol
D. 2,2-difluoropropan-1-ol
Methanol is more acidic than tert-butyl alcohol because it forms a more stable alkoxide ion on deprotonation. Likewise, 2-chloropropan-1-ol is more acidic than propan-1-ol due to the stabilizing effect of its chlorine atom on the alkoxide ion.
Explanation:The acidity of an alcohol is determined by the stability of the resulting alkoxide ion on deprotonation. In other words, an alcohol that can form a more stable alkoxide ion will be more acidic.
(a) Between methanol and tert-butyl alcohol, methanol would be more acidic. This is because the alkoxide ion formed when methanol loses a proton is more stable. In tert-butyl alcohol, the large, bulky tert-butyl group hinders the solvation of the alkoxide ion, making it less stable and the alcohol less acidic.
(b) 2-chloropropan-1-ol would be more acidic than propan-1-ol because the electron-withdrawing chlorine atom stabilizes the alkoxide ion, making the alcohol more acidic.
Learn more about Acidity of Alcohols here:https://brainly.com/question/32097309
#SPJ3
Ammonium carbamate (NH2COONH4) is a salt of carbamic acid that is found in the blood and urine of mammals. At 250.°C, Kc = 1.58 × 10−8 for the following equilibrium:
NH2COONH4(s) ⇌ 2 NH3(g) + CO2(g)
If 11.51 g of NH2COONH4 is put into a 0.500−L evacuated container, what is the total pressure at equilibrium? atm
Answer:
The total pressure at equilibrium is 0.07503 atm
Explanation:
The partial pressure of the product at equilibrium will be calculated as follows;
Kp = Kc[RT]³
given;
equilibrium constant Kc = 1.58 X 10⁻⁸
gas constant R = 0.0821 L.atm/mol.K
temperature T = (250 +273) = 523 k
Kp = 1.58 X 10⁻⁸ *(0.0821)³ *(523)³ = 1.251 X 10⁻³
NH₂COONH₄(s) ⇌ 2NH₃(g) + CO₂
NH₂COONH₄(s): Kp = 0, since it is in solid state
2NH₃(g) + CO₂: Kp = 1.251 X 10⁻³
I.C.E Analysis on the product
2NH₃(g) CO₂
I : 0 0
C : 2x x
E : (2x-0) (x-0)
At equilibrium, E: (2x-0)(x-0) = 1.251 X 10⁻³
(2x)(x) = 1.251 X 10⁻³
2x² = 1.251 X 10⁻³
x² = (1.251 X 10⁻³)/2
x² = 6.255 X 10⁻⁴
x = √(6.255 X 10⁻⁴)
x = 0.02501 atm
Partial pressure of 2NH₃(g) = 2x = 2(0.02501 atm) = 0.05002 atm
Partial pressure of CO₂ = x = 0.02501 atm
Total pressure = P(NH₃(g)) +P(CO₂)
Total pressure = 0.05002 atm + 0.02501 atm = 0.07503 atm
Therefore, the total pressure at equilibrium is 0.07503 atm
From data provided, the total pressure at equilibrium is 0.203 atm.
What is the total pressure at equilibrium?The total pressure, Ptotal at equilibrium is calculated from the equation of the reaction given below:
NH2COONH4(s) ⇌ 2 NH3(g) + CO2(g)From the equation of the reaction, If x moles of ammonium carbamate decomposes, it will produce 2x moles of NH3(g) and x moles of CO2(g).
Ammonium carbamate is a solid, and so it does not appear in the expression for Kc.
Kc = 1.58 × 10^-8
Therefore:
Kc = [NH3(g)]^2[CO2(g)]
Kc = (2x)^2(x) = 4x^3
1.58 × 10-8 = 4x^3
Thus, x = 0.00158 M
Hence:
[NH3(g)] = 2 × 0.00158 = 0.00316 M
[CO2(g)] = 0.00158 M
From the ideal gas equation:
PV = nRTP = nRT/Vwhere
R = 0.08206 L.atm/K.molT = 250°C = 523 KAlso, concentration is given by:
c = n/VTherefore, P = cRT.
Substituting and calculating for Ptotal:
Ptotal = (0.00316 M) × RT + (0.00158 M) × RT
= ((0.00316 + 0.00158) M) × (0.08206) × ((523) K)
Ptotal = 0.203 atm
Therefore, the total pressure at equilibrium is 0.203 atm.
Learn more about gas pressure and equilibrium at: https://brainly.com/question/26235856
Lines in one spectral series can overlap lines in another.
(a) Use the Rydberg equation to see if the range of wavelengths in the n1 = 1 series overlaps the range in the n1 = 2 series.
(b) Use the Rydberg equation to see if the range of wavelengths in the n1 = 3 series overlaps the range in the n1 = 4 series.
(c) How many lines in the n1 = 4 series lie in the range of the n1 = 5 series?
(d) What does this overlap imply about the hydrogen spectrum at longer wavelengths?
Answer:
(a) No overlap
(b) There is overlap
(c) Two
(d) See explanation below
Explanation:
1/λ = Rh (1/n₁² - 1/n₂² )
where λ is the wavelength of the transion, n₁ and n₂ are the principal energy levels ( n₁ < n₂ )
To solve this question, our strategy is to :
1. Calculate the longest wavelength for n₁ = 1, which corresponds to the transition with n₂ = 2.
2. Calculate the shortest wavelength for n₁ = 2, which corresponds to n₂ = infinity.
3. Compare the values to check if there is overlap
Lets plug the numbers to visualize this better:
Rydberg´s equation : 1/λ = 1.097 x 10⁷ /m x (1/n₁² - 1/n₂² )
For n₁ = 1, longest wavelength ( n₂ = 2 ) :
1/λ = 1.097 x 10⁷ /m x (1/1 ² - 1/2² ) = 8227.5/m
λ = 1/8227.5/m = 121 x 10⁻⁴ m x 1 x 10⁹ nm/m = 1.22 x 10² nm
For n₁ = 2, shortest wavelength ( n₂ = infinity ) :
1/λ = 1.097 x 10⁷ /m x (1/2 ² ) = 2.7 x 10⁶ /m
λ = 1/2.7 x 10⁶/m = 3.7 x 10⁻⁷ m x 1 x 10⁹ nm/m = 3.70 x 10² nm
There is no overlap between the n₁ = 1 and n₁ = 2 series ( there is no overlap 1.22 x 10² nm vs 3.70 x 10² nm )
(b) Repeat the same procedure as in part (a)
For n₁ = 3, longest wavelength ( n₂ = 4 ) :
1/λ = 1.097 x 10⁷ /m x (1/3 ² - 1/4² ) =5.33 x 10⁵/m
λ = 1/5.33 x 10⁵/m =1.88 x 10⁻⁶ m x 1 x 10⁹ nm/m = 1.88 x 10³ nm
For n₁ = 4, shortest wavelength ( n₂ = infinity ) :
1/λ = 1.097 x 10⁷ /m x (1/4 ² ) = 6.86 x 10⁵ /m
λ = 1/6.86 x 10⁵/m = 1.46 x10⁻⁶ m x 1 x 10⁹ nm/m = 1.46 x 10³ nm
There will be overlap
(c) Proceed as in the calculations above but now not only calculate for n₂ = 5 for n₁ = 4 but also a couple more and verify if there is overlap and count them.
For n₁ = 4 lets calculate n₂ = 5, 6, 7
1/λ = 1.097 x 10⁷ /m x (1/4 ² - 1/5² ) = 2.47 x 10⁵/m
λ = 1/2.47 x 10⁵/m = 4.05 x10⁻⁶ m x 1 x 10⁹ nm/m = 4.05 x 10³ nm
The same calculation is done for n₂ = 6 and 7, with the following results:
2.63 x 10³ nm, 2.17 x 10³ nm
Now the shortest wavelength in n₁ = 5 is:
1/λ = 1.097 x 10⁷ /m x (1/5² ) = 4.39 x 10⁵ / m
λ = 1/4.39 x 10⁵/m = 2.28 x10⁻⁶ m x 1 x 10⁹ nm/m = 2.28 x 10³ nm
There will be an overlap with 2 lines of n₁ = 4 (2.63 x 10³ nm, 2.17 x 10³ nm )
(d) The overlap tell us that the energy gap between energy levels becomes smaller as we could see from the calculations above. The spectra becomes confusing as there is more overlaps.
What volume of a 0.130 M NH4I solution is required to react with 905 mL of a 0.280 M Pb(NO3)2 solution?
Answer:
3.90 L
Explanation:
The reaction between NH₄I and Pb(NO₃)₂ is a double replacement reaction, so, the ions will dissociate and change in the two substances. The ions are NH₄⁺, I⁻, Pb⁺², and NO₃⁻, so the reaction is:
2NH₄I + Pb(NO₃)₂ → PbI₂ + 2NH₄NO₃
Thus, by the stoichiometry of the reactions, 2 moles of NH₄I are necessary to react with 1 mol of Pb(NO₃)₂. According to Proust's law, the proportion of the reaction must be kept so:
2 moles/1 mol = n NH₄I/n Pb(NO₃)₂
The number of moles of Pb(NO₃)₂ that will react is the concentration multiplied by the volume in L, so:
n Pb(NO₃)₂ = 0.280 * 0.905 = 0.2534 mol
2/1 = n NH₄I/0.2534
n NH₄I = 0.5068 mol
The volume of NH₄I is:
n NH₄I = 0.130 *V
0.5068 = 0.130V
V = 3.90 L
Calcium nitrate and ammonium fluoride react to form calcium fluoride, dinitrogen monoxide, and water vapor. What mass of each substance is present after 21.75 g of calcium nitrate and 22.66 g of ammonium fluoride react completely
g calcium nitrate = 21.75 g, g ammonium fluoride = 22.66 g
g calcium fluoride = 10.34 g, g dinitrogen monoxide = 5.82 g, and
g water = 2.38 g.
The balanced chemical equation for the reaction is:
[tex]\rm 3 Ca(NO_3)2 + 6 NH_4F \rightarrow 6 NH_4NO_3 + CaF_2 + N_2O + 3 H_2O[/tex]
Given the molar masses:
[tex]\rm Ca(NO_3)2[/tex] = 164.09 g/mol
[tex]\rm NH_4F[/tex] = 37.04 g/mol
[tex]\rm CaF_2[/tex] = 78.08 g/mol
[tex]\rm N_2O[/tex] = 44.02 g/mol
[tex]\rm H_2O[/tex] = 18.02 g/mol
First, calculate the moles of each reactant:
Moles of [tex]\rm Ca(NO_3)2[/tex] = 21.75 g / 164.09 g/mol ≈ 0.1323 mol
Moles of [tex]\rm NH_4F[/tex] = 22.66 g / 37.04 g/mol ≈ 0.6113 mol
Based on the balanced equation, the limiting reactant is [tex]\rm Ca(NO_3)2[/tex], which reacts with 0.1323 moles.
Calculate the masses of the products:
g calcium fluoride = 0.1323 mol * 78.08 g/mol ≈ 10.34 g
g dinitrogen monoxide = 0.1323 mol * 44.02 g/mol ≈ 5.82 g
g water = 0.1323 mol * 18.02 g/mol ≈ 2.38 g
Since [tex]\rm NH_4F[/tex] is in excess, some of it remains unreacted:
Unreacted [tex]\rm NH_4F[/tex] = (0.6113 mol - 0.1323 mol) * 37.04 g/mol ≈ 21.90 g
In summary:
g calcium nitrate = 21.75 g
g ammonium fluoride = 22.66 g
g calcium fluoride = 10.34 g
g dinitrogen monoxide = 5.82 g
g water = 2.38 g
The reaction consumes calcium nitrate and ammonium fluoride to produce calcium fluoride, dinitrogen monoxide, and water vapour.
Know more about calcium nitrate:
https://brainly.com/question/32874228
#SPJ12
The flame test for sodium is based on the intense yelloworange emission at 589 nm; the test for potassium is based on its emission at 404 nm. When both elements are present, the Na⁺ emission is so strong that the K⁺ emission can’t be seen, except by looking through a cobalt-glass filter. (a) What are the colors of these Na⁺ and K⁺ emissions? (b) What does the cobalt-glass filter do? (c) Why are the oxidizing agents in fireworks made of KClO₄ or KClO₃, rather than the corresponding sodium salts?
Answer:
a) The flame test of Na, at 589nm will show a golden yellow color when the sodium ion is emitted. These is due to the electropositive nature of the alkali metals.
While the flame test for K at 404nm will ignite a violet color when the Potassium ion is emitted. This properties are due to the high electropositive nature of the group1 elements which also indicate their strong reducing agent.
b) The cobalt glass filter act as hindrance during the flame test to seperate or filter the golden yellow color caused as a result of the presence of the sodium, as it makes the violet color to be more visible.
c) These is due to the Oxidizing ability of KClO₄ or KClO₃ compared to the salts of sodium. Also is the low solubility of the two salts and their solubility constant (Ksp) compared to sodium salts.
Explanation:
a) The flame test of Na, at 589nm will show a golden yellow color when the sodium ion is emitted. These is due to the electropositivity nature of the alkali metals.
While the flame test for K at 404nm will ignite a violet color when the Potassium ion is emitted. This properties are due to the high electropositivity nature of the group1 elements which also indicate their strong reducing agent.
b) The cobalt glass filter act as hindrance during the flame test to seperate or filter the golden yellow color caused as a result of the presence of the sodium, as it makes the violet color to be more visible.
c) These is due to the Oxidizing ability of KClO₄ or KClO₃ compared to the salts of sodium. Also is the low solubility of the two salts and their solubility constant (Ksp) compared to sodium salts.
1.00 mL of a 250.0 µM solution of KCl is diluted to 50.0 mL. What is concentration of this solution?
Answer:
5.00 µM
Explanation:
Given data
Initial concentration (C₁): 250.0 µMInitial volume (V₁): 1.00 mLFinal concentration (C₂): ?Final volume (V₂): 50.0 mLWe can find the final concentration using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 250.0 µM × 1.00 mL / 50.0 mL
C₂ = 5.00 µM
The concentration of the diluted solution is 5.00 µM.
For your research project, your group is planning to treat embryos with acetaminophen at a concentration of 50 ug/L plus varying concentrations of dextromethorphan between O and 100 uM. You have stock solutions of 500 ug/L acetaminophen and 1 mM dextromethorphan to work with. If you wanted to treat some embryos with final concentrations of 50 ug/L acetaminophen and 20 uM dextromethorphan in a total volume of 10 ml, how would you make up 9 ml of solution containing both acetaminophen and dextromethorphan, to which you could add 1 ml of embryo water containing the embryos? A. Add 0.5ml of 500 ug/1 acetaminophen and 0.5 ml of 1 mM dextromethorphan to 8 ml of water B. Add 1 ml of 500 ug/l acetaminophen and 0.2 ml of 1 mM dextromethorphan to 8.8 ml of water. C. Add 0.1 ml of 500 ug/l acetaminophen and 0.5 ml of 1 mM dextromethorphan to 8.4 ml of water. D. Add 1 ml of 500 ug/I acetaminophen and 0.2 ml of 1 mM dextromethorphan to 7.8 ml of water. E. Add 1 ml of 500 ug/I acetaminophen and 2 ml of 1 mM dextromethorphan to 6 ml of water.
Answer:
D
Explanation:
When a dilution is made, a volume of the stock solution is collected and then is mixed to the solvent. The total amount of the solute (number of moles or mass), must be equal in the volume of the sample and at the final volume, because of the Lavoiser's law (the matter can't be created nor destructed).
The mass or the number of moles is the concentration (C) multiplied by the volume (V), so, if 1 is the sample of the stock solution, and 2 the diluted solution:
C1*V1 = C2*V2
The final volume of the solution is 10 mL. So, let's identify the volume needed for each stock solution.
Acetaminophen
C1 = 500 ug/L
C2 = 50 ug/L
500*V1 = 50*10
V1 = 1 mL
Dextromethorphan
C1 = 1 mM = 1000 uM
C2 = 20 uM
1000*V1 = 20*10
V1 = 0.2 mL
So, the volume of water needed is the total less the volume of the stocks solutions less the volume of the embryo water:
V = 10 - 1 - 1 - 0.2 = 7.8 mL
Thus, to to the solution, it's necessary to add at 1 mL of the embryo water 1 ml of 500 ug/I acetaminophen and 0.2 ml of 1 mM dextromethorphan, and 7.8 ml of water.
Calculate the distance olive oil (a lipid) could move in a membrane in 15 seconds assuming the diffusion coefficient is 1 μm2/s. Use the equation where S is distance traveled, t is time, and D is the diffusion coefficient.S = (4Dt)^1/2
Answer:
The answer according to the given equation is S = 0.00077 cm
Explanation:
According to this equation
S = (4Dt)^1/2
S = (4* 1^e-8 * 15)^0.5
S = 0.00077 cm
According to the Approximation equation for diffusion time
t ≅ S^2 / 2D
S = 0.00055 cm
Using the equation S = (4Dt)^1/2, the average distance olive oil can move in a membrane in 15 seconds is calculated to be 7.75 micrometers.
Explanation:To calculate the distance that olive oil, a lipid, could move in a membrane in 15 seconds with a diffusion coefficient of 1 μm2/s, we use the equation S = (4Dt)1/2. Plugging in the values, we get S = (4 × 1 μm2/s × 15 s)1/2. We perform the calculation as follows:
Calculate the product of 4, the diffusion coefficient (D), and time (t): 4 × 1 μm2/s × 15 s = 60 μm2Take the square root of 60 μm2 to find the distance: √60 μm2 = 7.75 μmThe average distance that olive oil can move in the membrane in 15 seconds is 7.75 micrometers.
B. Steve selects an amino acid that you wrote for part A and dissolves 0.1 moles in 1 liter of water. He adjusts the pH to 7.2, but then absentmindedly adds 0.03 more moles of HCl to the solution. Is the solution still a good buffer
Answer:
i asked to where my uncle shoes he told my no
Explanation:
A 5.90-g sample of an unknown compound containing only C, H, and O combusts in an oxygen rich environment. When the products have cooled to 20.0 ? at 1 bar, there are 7.98 L of CO2 and 5.91 mL of H2O. The density of water at 20.0 ? is 0.998 g/mL.
What is the empirical formula of the unknown compound?
If the molar mass is 144.2 g/mol, what is the molecular formula of the compound?
Answer:
The empirical formula is C4H8O
The molecular formula is C8H16O2
Explanation:
Step 1: Data given
Mass of the unknown sample = 5.90 grams
Temperature = 20.0 °C
PRessure = 1 bar
Volume CO2 = 7.98 L
Volume of H2O = 5.91 mL = 0.00591 L
Density of water at 20.0 °C = 0.998 g/mL
Step 2: Calculate moles CO2
p*V= n*R*T
⇒ with p = the pressure = 1 bar = 0.986923 atm
⇒ with V = the volume of CO2 = 7.98 L
⇒ with n = the number of moles CO2 = TO BE DETERMINED
⇒ with R = The gas constant = 0.08206 L*atm/K*mol
⇒ with T = the temperature = 20.0 °C = 293 Kelvin
n = (p*V)/(R*T)
n = (0.986923*7.98)/(0.08206*293)
n = 0.3276 moles
Step 3: Calculate mass water
Mass water = volume * density
Mass water = 5.91 mL * 0.998 g/mL
Mass water = 5.89818 grams
Step 4: Calculate moles H2O
Moles H2O = 5.89818 grams / 18.02 g/mol
Moles H2O = 0.3273 moles
Step 5: Calculate moles of hydrogen
For 1 mol H2O we have 2 moles of hydrogen
For 0.3273 moles H2O we have 2*0.3273 moles = 0.6546 moles
Step 6: Calculate moles of carbon
1 mol CO2 has 1 mol C
0.3276 moles moles CO2 has 0.3276 moles C
Step 7: Calculate mass C
Mass C = 0.3276 moles * 12.0 g/mol
Mass C = 3.93 grams
Step 8: calculate mass of oxygen
Mass of O = mass of sample - (mass of C + mass of H)
Mass O = 5.90 grams - (3.93 +0.661 )
Mass O = 1.309 grams
Step 9: Calculate moles O
Moles O = 1.309 grams / 16.0 g/mol
Moles O = 0.0818 moles
Step 10: Calculate mol ratio
We divide by the smallest amount of moles
C: 0.3276 / 0.0818 = 4
H: 0.6546 / 0.0818 = 8
O: 0.0818 / 0.0818 = 1
The empirical formula is C4H8O
If the molar mass is 144.2
The molecular formula is C8H16O2