Answer:
Carbon Cycle
Steps of the Carbon Cycle
CO2 is removed from the atmosphere by photosynthetic organisms (plants, cyanobacteria, etc.) and used to generate organic molecules and build biological mass. Animals consume the photosynthetic organisms and acquire the carbon stored within the producers. CO2 is returned to the atmosphere via respiration in all living organisms. Decomposers break down dead and decaying organic matter and release CO2. Some CO2 is returned to the atmosphere via the burning of organic matter (forest fires). CO2 trapped in rock or fossil fuels can be returned to the atmosphere via erosion, volcanic eruptions, or fossil fuel combustion.Nitrogen Cycle
Steps of the Nitrogen Cycle
Atmospheric nitrogen (N2) is converted to ammonia (NH3) by nitrogen-fixing bacteria in aquatic and soil environments. These organisms use nitrogen to synthesize the biological molecules they need to survive. NH3 is subsequently converted to nitrite and nitrate by bacteria known as nitrifying bacteria. Plants obtain nitrogen from the soil by absorbing ammonium (NH4-) and nitrate through their roots. Nitrate and ammonium are used to produce organic compounds. Nitrogen in its organic form is obtained by animals when they consume plants or animals. Decomposers return NH3 to the soil by decomposing solid waste and dead or decaying matter. Nitrifying bacteria convert NH3 to nitrite and nitrate. Denitrifying bacteria convert nitrite and nitrate to N2, releasing N2 back into the atmosphere.Oxygen Cycle
Oxygen is an element that is essential to biological organisms. The vast majority of atmospheric oxygen (O2) is derived from photosynthesis. Plants and other photosynthetic organisms use CO2, water, and light energy to produce glucose and O2. Glucose is used to synthesize organic molecules, while O2 is released into the atmosphere. Oxygen is removed from the atmosphere through decomposition processes and respiration in living organisms.
Explanation:
Isooctane, C8H18, is the component of gasoline from which the term octane rating derives.
A. Write a balanced equation for the combustion of isooctane to yield CO2 and H2O.
B. Assuming that gasoline is 100% isooctane, the isooctane burns to produce only CO2 and H2O, and that the density of isooctane is 0.792 g/mL, what mass of CO2 in kilograms is produced each year by the annual US gasoline consumption of 4.6 x 10^10 L?
C. What is the volume in L of this CO2 at STP?
D. How many moles of air are necessary for the combustion of 1 mol of isooctane, assuming that air is 21.0% O2 by volume.? What is volume in L of this air at STP?
Answer:
a) C₈H₁₈ + (23/2)O₂ -----> 8CO₂ + 9H₂O
b) Mass of CO₂ produced annually from this combustion of isooctane gasoline = 1.12 × 10⁵ Kg
c) CO₂ produced from the combustion of the gasoline in a year will occupy 5.632 × 10⁷ L
d) There needs to be a minimum of 1.752 × 10⁷ moles of air and 3.92 × 10⁸ L of air for the oxygen to be in excess all through the year of gasoline combustion.
Explanation:
a) C₈H₁₈ + (23/2)O₂ -----> 8CO₂ + 9H₂O
b) C₈H₁₈ has a density of 0.792 mg/L.
Since density = mass/volume;
mass = density × volume
Mass of C₈H₁₈ with 4.6 x 10^10 L volume = 0.792 × 4.6 x 10^10 = 3.643 × 10^10 mg = 3.643 × 10⁷ g.
To obtain the mass of CO₂ produced, we need the number of moles of C₈H₁₈ that burned.
Number of moles = mass/molar mass
Molar mass of C₈H₁₈ = (8×12) + 18 = 114g/mol
Number of moles of C₈H₁₈ = (3.643 × 10⁷)/114 = (3.2 × 10⁵) moles.
From the chemical reaction,
1 mole of C₈H₁₈ burns to give 8 moles of CO₂
(3.2 × 10⁵) moles will give 8 × 3.2 × 10⁵ = (2.56 × 10⁶) moles of CO₂
Mass of CO₂ produced = number of moles × Molar mass
Molar mass of CO₂ = 44 g/mol
Mass of CO₂ produced = 2.56 × 10⁶ × 44 = 1.12 × 10⁸ g = 1.12 × 10⁵ kg
c) 1 mole of any gas at stp occupies 22.4L
2.56 × 10⁶ moles of CO₂ will occupy 2.56 × 10⁶ × 22.4 = 5.632 × 10⁷ L
d) 1 mole of C₈H₁₈ requires 23/2 moles of O₂ for complete combustion yearly.
3.2 × 10⁵ moles would require 3.2 × 10⁵ × 23/2 = 3.68 × 10⁶ moles of O₂
O₂ makes up 21% of the air
That is,
0.21 moles of O₂ would be contained in 1 mole of air
3.68 × 10⁶ moles of O₂ would be contained in (3.68 × 10⁶ × 1)/0.21 = 1.752 × 10⁷ moles of air.
1 mole of any gas at stp occupies 22.4L
1.752 × 10⁷ of air will occupy
1.752 × 10⁷ × 22.4/1 = 3.92 × 10⁸ L of air!
Final answer:
The balanced equation for the combustion of isooctane is C8H18(l) + 11O2(g) → 8CO2(g) + 9H2O(g). Assuming that gasoline is 100% isooctane, the mass of CO2 produced each year by the annual US gasoline consumption of 4.6 x 10^10 L is 9.04 x 10^6 kg. The volume of this CO2 at STP is 2.03 x 10^11 L. We use the molar ratios from the balanced equation to determine the number of moles of air necessary for the combustion of 1 mol of isooctane. The volume in L of this air at STP is 1173 L.
Explanation:
The balanced chemical equation for the combustion of isooctane (C8H18) is:
C8H18(l) + 11O2(g) → 8CO2(g) + 9H2O(g)
Assuming that gasoline is 100% isooctane, we can use the balanced equation to calculate the mass of CO2 produced each year by the annual US gasoline consumption of 4.6 x 1010 L. We start by calculating the mass of isooctane consumed, then use the molar ratios from the balanced equation to calculate the mass of CO2 produced. Given that the density of isooctane is 0.792 g/mL, the mass consumed is 4.6 x 1010 L x 0.792 g/mL = 3.64 x 1010 g. The molar mass of CO2 is 44.01 g/mol, so the number of moles of CO2 produced is 28 x 3.64 x 1010 g / 114.22 g/mol = 9.04 x 109 mol. Finally, we convert to kilograms by dividing by 1000, so the CO2 produced is 9.04 x 106 kg.
To calculate the volume of CO2 at STP, we use the ideal gas law. At STP (Standard Temperature and Pressure), 1 mole of gas occupies 22.4 L. So, the volume of CO2 at STP is 9.04 x 109 mol x 22.4 L/mol = 2.03 x 1011 L.
We use the molar ratios from the balanced equation to determine the number of moles of air necessary for the combustion of 1 mol of isooctane. From the equation, we can see that 11 moles of O2 are required for the combustion of 1 mol of isooctane. Since air is 21.0% O2 by volume, the volume of air required is 11 / 0.21 = 52.4 mol. At STP, 1 mole of gas occupies 22.4 L, so the volume of air required is 52.4 mol x 22.4 L/mol = 1173 L.
Two small metal spheres are 26.50 cm apart. The spheres have equal amounts of negative charge and repel each other with a force of 0.03500 N. What is the charge on each sphere?
Answer:
[tex]-5.226\times 10^{-7} C[/tex] is the charge on each sphere.
Explanation:
Coulomb's law is given as ;
[tex]F=K\times \frac{q_1\times q_2}{r^2}[/tex]
[tex]q_1,q_2[/tex] = Charges on both charges
r = distance between the charges
K = Coulomb constant =[tex]9\times 10^{9} N m^2/C^2[/tex]
We have ;
Charge of ion =[tex]q_1=-q[/tex]
Charge of electron =[tex]q_2=-q[/tex]
[tex]r=26.55 cm =0.2655 m[/tex]
Force between the charges at r distance will be : F
F = 0.03500 N
[tex]0.03500 N=9\times 10^{9} N m^2/C^2\times \frac{(-q)\times (-q)}{(0.2655 m)^2}[/tex]
[tex]q=5.226\times 10^{-7} C[/tex]
[tex]-5.226\times 10^{-7} C[/tex] is the charge on each sphere.
Describe the Sun’s interior. Include references to the main physical processes that occur at various depths within the sun.
Answer:
The sun is the large astronomical body that is located at the center of the solar system. The interior structure of the sun are as follows-
Core- It represents the extreme interior portion of the sun. This is the hottest region of the sun and there occurs the process of constant nuclear fusion reactions that fuel the sun and helps in burning. Here the nucleus of two hydrogen atoms is fused together to form a heavy nucleus of a helium atom. It has a thickness of about 500 km. Radiative zone- This is the layer that surrounds the core of the sun. From this layer, the energy is radiated outward where the protons carry these energies in the form of thermal radiation. Here, the process of radiation takes place. Convective zone- This is the outer layer of the sun's interior. It is about 200,000 km thick, and in this layer, the energy constantly flows, allowing the heat to move upward by undergoing the process of convection.A student is given a stock solution of 1.00 M NaCl in water. They are asked to make 5 mL of 0.0500 M NaCl. How much of the stock solution should they dilute to 5 mL to make the correct concentration?
a) 10.0 mL
b) 55.5 mL
c) 1.00 mL
d) 35.3 mL
e) 27.8 mL
Answer:
The answer to your question is None of your answers is correct, maybe the data are wrong.
Explanation:
Data
Concentration 1 = C1 = 1 M
Volume 2 = 5 ml
Concentration 2 = 0.05 M
Volume 1 = x
To solve this problem use the dilution formula
Concentration 1 x Volume 1 = Concentration 2 x Volume 2
Solve for Volume 1
Volume 1 = (Concentration 2 x Volume 2)/ Concentration 1
Substitution
Volume 1 = (0.05 x 5) / 1
Simplification
Volume 1 = 0.25/1
Result
Volume 1 = 0.25 ml
Organism in kingdoms archaebacteria live in environments that are very hot or very cold Which other characteristics is common to organisms in this kingdom
Answer:
Archaebacteria belong to the kingdom 'Archaea'. They resemble bacteria when observed under a microscope.They are single-cell organisms. However,they differ from prokaryotes in many ways.
•They have a completely different cell membrane so that they can survive and thrive in harsh environments
•Unlike bacteria,their cell wall and membrane can be stiff and gives a specific shape such as flat,rod shaped or cubic.
•the absence of peptidoglycan in cell wall,instead contain lipid and protein to give them strength and resistance against chemical.
•The cell membrane of archae are made up of phospholipid bilayer but unlike bacteria and eukaryotes,the bilayers have ether bonds.These ether bonds have the ability to resist chemical and helps them to survive in very extreme environments that might otherwise kill them.
•They have multiple RNA polymerase that contain multiple polypeptide
•They have initiator tRNA with unmodified methionine(unlike bacteria).
•They have the ability to survive in very high temperatures,in acidic environment and alkaline environments and even have tolerance for high salt content.
Some velomobile seats have been designed to hold ice packs inside their cushions. If you started a ride with ice packs that held 1100 gg of frozen water at 0 ∘C∘C , and the temperature of the water at the end of the ride was 32 ∘C∘C , how many calories of heat energy were absorbed?
Final answer:
Approximately 34.97 kilocalories of heat energy were absorbed by the water in the velomobile seats.
Explanation:
In this scenario, we need to calculate the amount of heat energy absorbed by the water in the velomobile seats. To do this, we can use the formula:
q = mcΔTWhere:
q is the heat energy absorbedm is the mass of the waterc is the specific heat capacity of water, which is 4.18 J/g°CΔT is the change in temperature, which is 32°C - 0°C = 32°CLet's calculate the heat energy absorbed:
q = m * c * ΔTq = 1100 g * 4.18 J/g°C * 32°Cq = 146,176 JConverting this to kilocalories:
1 Joule = 0.000239006 kJ (approximately)q = 146,176 J * 0.000239006 kJ/Jq = 34.97 kJTherefore, approximately 34.97 kilocalories of heat energy were absorbed by the water in the velomobile seats.
Anabolic reactions _______ bonds, whereas catabolic reactions __________ bonds. A. decrease; increase. B. break; make C. weaken; strengthen D. loosen; tighten. E. make; break
Answer:
The corrext answer is E. make; break
Explanation:
In living organisms, the metabolism is either anabolic or catabolic where anabolic metabolism is energy consuming and catabolic metabolism is eneegy releasesing. It should however be noted that anabolic reaction builds or biosynthesize new mollecular structures while catabolic reaction breaks down complex structure bonds into simple structures
The braking down of bonds in catabolic reations realeses energy to sustain the anabolic rection process for the formation of new bonds
Anabolic reactions create or 'make' new bonds while forming complex structures, requiring energy. Catabolic reactions involve 'break' down bonds to create simpler structures, often releasing energy.
Explanation:The correct answer is E. Anabolic reactions are those that 'make' or form new bonds, they involve the joining of smaller molecules to form larger, more complex ones. This process often requires energy. Conversely, catabolic reactions are those that 'break' or degrade bonds, they involve the breaking down of larger molecules into smaller, simpler ones. This process often releases energy.
Learn more about Anabolic and Catabolic reactions here:https://brainly.com/question/31913853
#SPJ3
how many moles of H2 are produced from 5.8 moles of NH3
2NH3 -> N2 + 3H2
How many moles of O2 are needed to produced 1.8 moles of H2O?
C3H8 + 5O2 -> 3CO2 + 4H2O
Answer:
1. 8.7moles of H2
2. 2.25moles of O2
Explanation:
1. 2NH3 —> N2 + 3H2
From the equation,
2moles of NH3 produce 3 moles of H2.
Therefore, 5.8moles of NH3 will produce Xmol of H2 i.e
Xmol of H2 = (5.8x3)/2 = 8.7moles
2. C3H8 + 5O2 —> 3CO2 + 4H2O
From the equation,
5moles of O2 produced 4moles of H2O.
Therefore, Xmol of O2 will produce 1.8mol of H2O i.e
Xmol of O2 = (5x1.8)/4 = 2.25moles
At high trns phosphine (pH2) dissociates into phosphorus and hydrogen by the following reaction: At SOW C the rate at which phosphine dissociates is for I in seconds. The reaction occurs in a constant volume. 3-L vessel, and the initial concentration of phosphine is 5 kmol/rn3. If 3 rnol of the phosphine reacts. how much phosphorus and hydrogen is produced?
Answer: 0.75 moles of Phosphorus and 4.5 moles of Hydrogen are produced respectively from 3 moles of Phosporus.
Explanation:
4PH3 --------> P4 + 6H2
From the stochiometry of the reaction,
4 moles of Phosphine gives 1 mole of Phosphorus
3 moles of Phosphine will give (3×1)/4 moles of Phosphorus.
Therefore, 0.75 moles of Phosphorus is produced.
Similarly, 4 moles of Phosphine gives 6 moles of Hydrogen
3 moles of Phosphine will give (3×6)/4 moles of Hydrogen.
Therefore, 4.5 moles of Hydrogen is produced.
QED!
things required for life, including heat, water, nutrients, salts and oxygen are called "___________ substances."
Answer:
Vital
Explanation:
Hello! The factors mentioned previously are essential substances for the life and health of our bodies. Not only in humans, but also for animals. They are factors that are linked and contribute to physical and mental energy, growth and life. Are essentials because humans can't live without that.
Thanks for your question! Feel free to ask more!
Which of the following solutes has the greatest effect on the colligative properties for a given mass of pure water? Explain.
a. 0.01 mol of CaCl2 (an electrolyte)
b. 0.01 mol of KNO3 (an electrolyte)
c. 0.01 mol of CO(NH2)2 (a nonelectrolyte)
Answer:
Option a.
0.01 mol of CaCl₂ will have the greatest effect on the colligative properties, because it has the biggest i
Explanation:
To determine which of the solute is going to have a greatest effect on colligative properties we have to consider the Van't Hoff factor (i)
These are the colligative properties:
ΔP = P° . Xm . i → Lowering vapor pressure
ΔT = Kb . m . i → Boiling point elevation
ΔT = Kf . m . i → Freezing point depression
π = M . R . T → Osmotic pressure
Van't Hoff factor are the numbers of ions dissolved in the solution. For nonelectrolytes, the i values 1.
CaCl₂ and KNO₃ are two ionic solutes. They dissociate as this:
CaCl₂ → Ca²⁺ + 2Cl⁻
We have 1 mol of Ca²⁺ and 2 chlorides, so 3 moles of ions → i = 3
KNO₃ → K⁺ + NO₃⁻
We have 1 mol of K⁺ and 1 mol of nitrate, so 2 moles of ions → i = 2
Option a, is the best.
0.01 mol of CaCl2 has the greatest effect on colligative properties because it dissociates into three ions per formula unit, resulting in a higher number of dissolved particles compared to the same amount of KNO3, which dissociates into two ions, and CO(NH2)2, which does not dissociate.
Explanation:The solute that has the greatest effect on the colligative properties for a given mass of pure water from the options provided would be 0.01 mol of CaCl2 (an electrolyte). This is because the colligative properties such as freezing point depression, boiling point elevation, and osmotic pressure depend on the total number of dissolved particles in solution.
When CaCl2 dissolves in water, it dissociates into three ions: one Ca2+ ion and two Cl- ions. This means for every mole of CaCl2 we get three moles of particles. In contrast, 0.01 mol of KNO3, another electrolyte, produces two ions per formula unit, and 0.01 mol of CO(NH2)2 (urea, a nonelectrolyte) does not dissociate into ions when dissolved, hence producing only one mole of particles per mole of solute.
Therefore, for the given mass of 0.01 mol, CaCl2 produces the greatest number of particles and therefore has the greatest effect on colligative properties when compared to KNO3 and urea.
Given the different molecular weights, dipole moments, and molecular shapes, why are their molar volumes nearly the same?
a. Because in the gas phase molecules do not interact with each other.
b. Because molecules of a gas have very low kinetic energy.
c. Because these factors compensate each other.
d. Because most of the volume occupied by the substance is empty space.
Answer:
option d
Explanation:
Molecular sizes of gaseous molecules are very less. Volume occupied by the all the molecules of the gases are very less or negligible as compared to the container in which it is kept. Therefore, most of the volume occupied by gaseous molecules are negligible.
Volume occupied by the gaseous molecules are actually the volume of the container and its does not depend upon the amount, molecular mass or dipole moment of the gaseous molecules.
Therefore, the correct option is d ‘Because most of the volume occupied by the substance is empty space.’
The carbon-carbon double bond in ethene is ________ and ________ than the carbon-carbon triple bond in ethyne.
Answer:
weaker and longer
Explanation:
Since there are 3 bonds in ethyne in comparision with the 2 bonds of ethyne between carbon atoms, they are attracted more to each other → the bond gets shorter . And since there are one more bond that supports the union → the bond gets stronger
thus the carbon-carbon double bond in ethene is weaker and longer than the carbon-carbon triple bond in ethyne
A chemistry student needs 35.0 g of thiophene for an experiment. She has available 1.0 kg of a 14.0\%w/w solution of thiophene in ethanol Calculate the mass of solution the student should use. If there's not enough solution, press the "solution" button. Be sure your answer has the correct number of significant digits.
Answer:
The student should use 250g of the 14.0% w/w solution of thiophene in ethanolExplanation:
You must find how many grams of a 14.0% solution contains 35.0 g of thiophene (solute) and then evaluate if the amount available (1.0 kg) is enough.
Formula:
% w/w = (mass of solute / mass of solution) × 100Substitute and solve for the mass of solution:
[tex]14.0 =(35.0g/x)\times 100\\\\14.0/100=35.0g/x\\\\x=35.0g\times100/14\\\\x=250g[/tex]
Hence, the student should use 250g of the 14.0% w/w solution of thiophene in ethanol. Since, 1.0 kg is 1,000g there is enough available.
Final answer:
To acquire 35.0 grams of thiophene from a 14.0% w/w thiophene solution, the student should measure out 250 grams of the solution. The 1.0 kg of available solution is more than sufficient for the student's needs.
Explanation:
To calculate the mass of the thiophene solution that the student needs, we first need to understand the percentage concentration of the solution. A 14.0% w/w solution of thiophene in ethanol means that there are 14 grams of thiophene for every 100 grams of solution. To find out how many grams of solution contain the required 35.0 grams of thiophene, we use the following formula:
Mass of thiophene = (Percentage/100) × Total mass of solution
Therefore, we can rearrange this to solve for the total mass of solution:
Total mass of solution = Mass of thiophene / (Percentage/100)
Total mass of solution = 35.0 g / (14.0/100) = 250 g
The student should use 250 grams of the solution to obtain 35.0 grams of thiophene. Since the available solution is 1.0 kg, which is 1000 grams, there is enough solution for the experiment.
How did oxygen (O2) get into Earth's atmosphere? How did oxygen (O2) get into Earth's atmosphere? It was captured from the solar nebula. It came from chemical reactions with surface rocks. It was outgassed from volcanoes. It was released by life through the process of photosynthesis.
Answer:
Option (4)
Explanation:
The primitive atmosphere was comprised of lesser or no amount of oxygen. With the progressive time, primitive organisms appeared such as the primitive aquatic plants, algae, and cyanobacteria, that carried out the process of photosynthesis in the presence of sunlight, water, and CO₂, and in return produced the food and oxygen. This is how the rapid photosynthesis process led to the increasing amount of oxygen in the atmosphere that facilitates the growth and evolution of different life forms on earth.
Thus, the correct answer is option (4).
Would you expect the water solubility of the resulting molecule to be higher than, lower than, or about the same as the solubility of glucose?
Answer:
It'll be lower.
Explanation:
Water is a universal solvent, which means it can dissolve virtually anything except oils and non-polar substance because of its polarity and ability to form hydrogen bond .Water molecules are also attracted to other polar molecules and to ions. A charged or polar substance that interacts with and dissolves in water is said to be hydrophilic: hydro means "water," and philic means "loving." In contrast, nonpolar molecules like oils and fats do not interact well with water
Iron (Fe) undergoes an allotropic transformation at 912C: upon heating from a BCC (phase) to an FCC ( phase). Accompanying this transformation is a change in the atomic radius of Fe—from rBCC = 0.12584 nm to rFCC = 0.12894 nm—and, in addition a change in density (and volume). Compute the percent volume change associated with this reaction. Does the volume increase or decrease?
The volume change during Iron's BCC to FCC transformation is computed via cubing the atomic radii and applying them to a percent change formula. The increasing radius hints at a likely volume increase, however, the exact percent change requires numerical calculation.
Explanation:To answer your question on whether the volume increases or decreases during the allotropic transformation of Iron (Fe) from a BCC phase (with atomic radius rBCC = 0.12584 nm) to an FCC phase (rFCC = 0.12894 nm), we need to recognize that the volume of an atom in a crystal structure can be determined by cubing its atomic radius, and the volume change can be obtained by taking the difference between the initial and final volumes.
The initial volume (of the BCC phase) is (0.12584 nm)³, while the final volume (of the FCC phase) is (0.12894 nm)³. The percent volume change can then be computed by [(final volume - initial volume)/initial volume] x 100%.
If this calculation yields a positive value, this would mean the volume increases; if the result is a negative value, the volume decreases. While it's evident that the radius increases during this transformation, due to the cubic relationship between radius and volume, it's likely that the volume also increases, although the actual percent volume change would require numerical computation.
Learn more about Volume change in Iron's allotropic transformation here:https://brainly.com/question/33518175
#SPJ12
Final answer:
The percent volume change during the allotropic transformation of iron from BCC to FCC can be calculated using the given atomic radii and results in an increase in volume.
Explanation:
To compute the percent volume change associated with the allotropic transformation of iron (Fe) from a BCC (body-centered cubic) structure to an FCC (face-centered cubic) structure at 912°C, we can use their respective atomic radii and the equation for the volume of a sphere, V = (4/3)πr3. Given the atomic radii for BCC as rBCC = 0.12584 nm and for FCC as rFCC = 0.12894 nm, the respective volumes can be calculated.
After obtaining the volumes, we calculate the percent volume change with the formula: Volume Change (%) = (VFCC - VBCC)/VBCC x 100%. Using the given radii, we find that the volume of FCC iron is larger than BCC iron, indicating that the volume increases during the transformation. The actual numerical percent volume change can be computed using the given radii values and the volume equation stated above.
What amount of ammonia, NH3(g), can be produced from 15 mol of hydrogen reacting with excess nitrogen?
3 H2(g) + N2(g) → 2NH3 (g)
Answer:
10mol
Explanation:
3H2 + N2 -> 2NH3
Stoichiometry is a tool that chemists can use to find the amount of substance present in any part of a reaction. The arrow (->) suggests that the reaction goes to completion (100%), so assume that left side = right side.
3H2
15 mol
You can divide the amount of moles by the coefficient to find the number of moles when you have a coefficient of 1. This number can then be used to find the value of moles for the rest of the products/reactants:
15/3=5mol
NH3 has a coefficient of 2, so we have to multiply the value we got (5mol) by 2. This results in having 10mol of ammonia as the end result.
Final answer:
The production of ammonia from hydrogen and excess nitrogen follows a 3:2 mole ratio, according to the balanced equation N2(g) + 3H2(g) → 2NH3(g). From 15 moles of hydrogen, 10 moles of ammonia are produced.
Explanation:
The question asks about the production of ammonia (NH3) from hydrogen (H2) in the presence of excess nitrogen (N2) based on the chemical reaction provided. According to the stoichiometry of the balanced equation, N2(g) + 3H2(g) → 2NH3(g), there is a 3:2 mole ratio between hydrogen and ammonia. Therefore, for every 3 moles of hydrogen, 2 moles of ammonia are produced.
To calculate the amount of ammonia produced from 15 mol of hydrogen, we use the mole ratio from the balanced equation. Since 3 moles of hydrogen produce 2 moles of ammonia, the amount of ammonia produced from 15 moles of hydrogen can be found using cross-multiplication:
(2 mol NH3) / (3 mol H2) = (x mol NH3) / (15 mol H2)
x = (15 mol H2 × 2 mol NH3) / 3 mol H2
x = 10 mol NH3
The answer is that 10 moles of ammonia can be produced from 15 moles of hydrogen reacting with excess nitrogen.
When a bullet is retrieved, how is it marked for identification purposes? What should be avoided?
Answer:
The retrieved bullet is normally marked at the tip or base with the initials of the investigator while ensuring that no markings are placed on the sides of the retrieved bullet. It is required to ensure that the markings made on the bullets does not go over or obscure striations or markings already present on the bullet.
Where the retrieved bullet is mutilated whereby it is impossible to engrave the required markings on it, it should be placed in a marked envelope, container or pill box
Explanation:
It is possible to trace retrieved casings and bullets from crime scene back to the gun from which it was fired or to the suspect's gun. The retrieved casings and bullet, when scrutinized at the crime lab, can reveal the gun model and make from which the casing or bullet was fired. The retrieved bullet or casing could also be traced back to the lot or batch of ammunition in possession of the suspect.
When a bullet is retrieved for identification purposes, it is marked with a unique identification number and other relevant information. Care must be taken to avoid damaging the bullet's markings and altering its shape or surface. Proper documentation and careful handling are crucial for accurate identification of the bullet.
Explanation:When a bullet is retrieved for identification purposes, it is marked using a variety of methods. One common method is to assign a unique identification number to the bullet, typically by inscribing or engraving it on the base or side of the bullet. This number can be used to match the bullet to a specific firearm. Additionally, the bullet may be photographed and cataloged, and any unique characteristics such as rifling marks or imperfections can be documented and compared to the firearm that fired it.
When marking a bullet for identification, it is important to avoid damaging the bullet's crucial markings or altering its shape in any way that could affect its comparison to a firearm. The use of permanent markers or corrosive substances should be avoided, as they can damage the bullet surface. Careful handling and proper documentation are critical to preserving the integrity of the bullet and ensuring accurate identification.
Learn more about Bullet identification here:https://brainly.com/question/32247848
#SPJ6
Which of the following structural bonding patterns for bricks features a single wythe? Select one: a. English bond b. Flemish bond c. Running bond d. Common bond
Answer:
C. Running bond
Explanation:
The common bond is a structural bonding pattern for bricks with a single wythe.
Explanation:The structural bonding pattern for bricks that features a single wythe is the common bond.
What term best describes when cryptography is applied to entire disks instead of individual files or groups of files?
Answer:
Full disk encryption
Explanation:
Disk encryption is a protection technique used in securing information by converting it into unreadable codes that cannot decrypt in other to prevent unauthorized persons from accessing the information.
When cryptography is applied to entire disks, it is termed Full disk encryption.
A disk of radius 2.0 cm has a surface charge density of 6.3 μC/m2 on its upper face. What is the magnitude of the electric field produced by the disk at a point on its central axis at distance z = 12 cm from the disk?
Answer:
the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Explanation:
Given: radius of disk, R = 2.0 cm = 2 × 10⁻² cm, surface charge density,σ = 6.3 μC/m² = 6.3 × 10⁻⁶ C/m², distance on central axis, z = 12 cm = 12 × 10⁻² cm.
The electric field, E at a point on the central axis of a charged disk is given by E = σ/ε₀([tex]1 - \frac{z}{\sqrt{z^{2} + R^{2} } }[/tex])
Substituting the values into the equation, it becomes
E = σ/ε₀([tex]1 - \frac{z}{\sqrt{z^{2} + R^{2} } }[/tex]) = 6.3 × 10⁻⁶/8.854 × 10⁻¹²([tex]1 - \frac{0.12}{\sqrt{0.12^{2} + 0.02^{2} } }[/tex]) = 7.12 × 10⁵([tex]1 - \frac{0.12}{0.1216}[/tex]) = 7.12 × 10⁵(1 - 0.9864) = 7.12 × 10⁵ × 0.0136 = 0.0968 × 10⁵ = 9.68 × 10³ N/C = 9.68 kN/C
Therefore, the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
How much energy is required to vaporize 48.7 g of dichloromethane (CH2Cl2) at its boiling point, if its ΔHvap is 31.6 kJ/mol?
Answer:
The answer is 18.12KJ is required to vaporise 48.7 g of dichloromethane at its boiling point
Explanation:
To solve the above question we have the given variable as follows
ΔHvap = heat of vaporisation of dichloromethane per mole = 31.6KJ/mole
However since the heat of vaporisation is the heat to vaporise one mole of dichloromethane, then, for 48.7 grams of dichloromethane, we have.
The number of moles of dichloromethane present = 48.7/84.93 = 0.573 moles
Therefore, the amount of heat required to vaporise 48.7 grams of dichloromethane at its boiling point is 31.6KJ/mole×0.573moles =18.12KJ
A rocket is launched with a thrust of 5 x 106 N at an angle of 37 degrees above the horizontal. The rocket has a total mass of 200,000 kg. What direction is the rocket's acceleration?
Answer:
[tex]\beta=63.85^{\circ}[/tex] from the vertical OR [tex]16.15^{\circ}[/tex] from horizontal.
Explanation:
Given:
Thrust of launching the rocket, [tex]F=5\times 10^6\ N[/tex]
angle of launch from the horizontal, [tex]\theta=37^{\circ}[/tex]
mass of the rocket, [tex]m=200000\ kg[/tex]
Now the direction of acceleration due to the thrust force is in the direction of force:
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{5000000}{200000}[/tex]
[tex]a=25\ m.s^{-2}[/tex]
And the acceleration due to gravity is always directed towards the center of the earth i.e. vertically downwards.
Since acceleration is a vector quantity we, approach accordingly:
[tex]\tan\beta=\frac{a\cos\theta}{g}[/tex]
[tex]\tan\beta=\frac{25\cos37^{\circ}}{9.8}[/tex]
[tex]\beta=63.85^{\circ}[/tex] from the vertical OR [tex]16.15^{\circ}[/tex] from horizontal.
Identify a chemical that is used to counteract the effects of acid precipitation on aquatic ecosystems.
Calcium carbonate
Explanation:
The chemical most commonly used to counteract the effects of acid precipitation on aquatic ecosystems is calcium carbonate.
Acid rain or acid deposition or acid precipitation is any form of precipitation with an elevated level of hydrogen ion concentration in them.
To nullify this acidic precipitation in aquatic ecosystem, we need to use an environmentally friendly alkaline agent.
The most desired is calcium carbonate. The carbonate neutralizes the acid by producing carbon dioxide, water and calcium salts.
Consider the reaction 4PH3(g) → P4(g) + 6H2(g) At a particular point during the reaction, molecular hydrogen is being formed at the rate of 0.137 M/s.__(a) At what rate is P4 being produced? M/s (b) At what rate is PH3 being consumed? M/s
Answer:
The rate at which [tex]P_4[/tex] is being produced is 0.0228 M/s.
The rate at which [tex]PH_3[/tex] is being consumed is 0.0912 M/s.
Explanation:
[tex]4PH_3\rightarrow P_4(g)+6H_2(g)[/tex]
Rate of the reaction : R
[tex]R=\frac{-1}{4}\frac{d[PH_3]}{dt}=\frac{1}{6}\frac{d[H_2]}{dt}=\frac{1}{1}\frac{d[P_4]}{dt}[/tex]
The rate at which hydrogen is being formed = [tex]\frac{d[H_2]}{dt}=0.137 M/s[/tex]
[tex]R=\frac{1}{6}\frac{d[H_2]}{dt}[/tex]
[tex]R=\frac{1}{6}\times 0.137 M/s=0.0228 M/s[/tex]
The rate at which [tex]P_4[/tex] is being produced:
[tex]R=\frac{1}{1}\frac{d[P_4]}{dt}[/tex]
[tex]0.0228 M/s=\frac{1}{1}\frac{d[P_4]}{dt}[/tex]
The rate at which [tex]PH_3[/tex] is being consumed :
[tex]R=\frac{-1}{4}\frac{d[PH_3]}{dt}[/tex]
[tex]0.0228 M/s\times 4=\frac{-1}{1}\frac{d[PH_3]}{dt}[/tex]
[tex]\frac{-1}{1}\frac{d[PH_3]}{dt}=0.912 M/s[/tex]
The rate at which P4 is being produced is 0.034 M/s and the rate at which PH3 is being consumed is 0.2055 M/s.
Explanation:The given reaction is 4PH3(g) → P4(g) + 6H2(g). We are given the rate at which molecular hydrogen is being formed, which is 0.137 M/s. To find the rate at which P4 is being produced, we need to consider the stoichiometry of the reaction. From the balanced equation, we can see that for every 4 moles of PH3 consumed, 1 mole of P4 is produced. Therefore, the rate at which P4 is being produced is 0.137/4 or 0.034 M/s.
Similarly, to find the rate at which PH3 is being consumed, we can use the stoichiometry of the reaction. From the balanced equation, we can see that for every 4 moles of PH3 consumed, 6 moles of H2 is produced. Therefore, the rate at which PH3 is being consumed is (6/4) * 0.137 or 0.2055 M/s.
Learn more about reaction rates here:
https://brainly.com/question/33304541
#SPJ3
Which is a characteristic of a Lewis base? It behaves as the electron donor. It behaves as the electron acceptor.
Answer: The correct statement is, It behaves as the electron donor.
Explanation:
According to the Lewis concept:
A Lewis-acid is defined as a substance that accepts electron pairs.
A Lewis-base is defined as a substance which donates electron pairs.
For example : Acid + Base ⇄ Acid-base adduct
[tex]H^++NH_3\rightleftharpoons NH_4^+[/tex]
As per question, the characteristic of a Lewis base is that it behaves as the electron donor.
Hence, the correct statement is, It behaves as the electron donor.
Answer:
A
Explanation:
It behaves as the electron donor
Determine what type of functional group is present on formaldehyde (CH2O). What property is associated with this group?
Answer: carbonyl group C=O
Explanation:
Formaldehyde is an organic compound, it is the simplest form of Aldehydes. It formula is CH2O and has a carbonyl functional group, C=O. The general formula for adehydes is R-COH. The carbon atom is bonded to oxygen with a double bond and one of the two remaining bonds is occupied by hydrogen, and the other by an alkyl group.
One of the properties of adehydes is their solubility in water. The lower members (up to 4 carbons) of aldehydes are soluble in water due to H-bonding. Ofcourse the the higher members are not soluble in water because their hydrophobic long chains.
Aldehydes contain carbonyl group, therefore they undergo reactions like nucleophilic addition reactions, oxidation, reduction, halogenation.
245 g water sample initially at at 32 oC absorbs 17 kcal of heat. What is the final temperature of water?
Answer:62.66°C or 235.66K
Explanation:Q=McpT, the energy was given in calories so you first convert to Joules by multiplying the value in calories by 4.184J.
17*4.184=71.128kJ.
71.128kJ=mcpT
71.128kJ=245*4.187*(T-Tm)
Tm is the final temperature of the mixture. The T is the temperature given which should be converted to Kelvin by adding 273...T=32+273=305K.
71128J=245*4.187*(305-Tm)
71128=312873.575-1025.815Tm
1025.815Tm=312873.575-71128
1025.815Tm=241745.58
Tm=241745.58/1025.815
Tm=235.66K
A cylinder contains oxygen at a pressure of 10.0 atm and a temperature of 300.0 K. The volume of the cylinder is 10,000 mL. What is the mass of oxygen gas?
Answer:
130 g of O₂
Explanation:
Let's apply the Ideal Gases Law, to solve this.
Pressure . volume = moles . R . T° (K)
First of all, we need to convert the volume in mL to L, because the units of R
10000 mL . 1L/1000mL = 10L
Let's replace → 10 atm . 10L = n . 0.082L.atm/mol.K . 300K
(100 atm.L) / (0.082L.atm/mol.K . 300K) = n
4.06 moles = n
Let's convert the moles to mass → 4.06 mol . 32 g/1mol = 130 g