Consider the following distinct forces:______________________________.
1.A downward force of gravity.
2.A force exerted by the channel pointing from Q to O.
3.A force in the direction of motion.
4.A force pointing from O to Q.
Which of the above forces is (are) acting on the ball when it is within the frictionless channel at position 'Q'.
n Q?

Answers

Answer 1

Answer:

2 and 4

Explanation:

Since it is at a position Q it is stationary ball, for a body to be at a point two opposite forces must act on it


Related Questions

A certain spacecraft is x AU (Astronomical Units) from Earth. How long in seconds does it take for a signal to reach the Earth after it is transmitted from the spacecraft? Hint: An AU is about 149.9 Million Km, and light moves at 299,800 Km/s. Indicate your answer to the nearest whole second.

Answers

Answer:

The time taken for a signal to reach the Earth after it is transmitted from the spacecraft is (500x) seconds

Explanation:

Distance of spacecraft from Earth = x AU = x × 149.9×10^6 Km = (149.9×10^6x) Km

Speed of light = 299,800Km/s

Time taken for a signal to reach the Earth after it is transmitted from the spacecraft = distance of spacecraft from Earth ÷ speed of light = (149.9×10^6x)Km ÷ 299,800Km/s = (500x) seconds

A train travels due south at 25 m/s (relative to the ground) in a rain that is blown toward the south by the wind. The path of each raindrop makes an angle of 66° with the vertical, as measured by an observer stationary on the ground. An observer on the train, however, sees the drops fall perfectly vertically. Determine the speed of the raindrops relative to the ground.

Answers

Answer:

Explanation:

Given

Train travels towards south with a velocity if [tex]v_t=25\ m/s[/tex]

Rain makes an angle of [tex]\theta =66^{o}[/tex]  with vertical

If an observer sees the drop fall perfectly vertical i.e. horizontal component of rain velocity is equal to train velocity

suppose [tex]v_r[/tex] is the velocity of rain with respect to ground then

[tex]v_r\sin\theta =v_t[/tex]

[tex]v_r\times \sin (66)=25[/tex]

[tex]v_r=27.36\ m/s[/tex]

Therefore velocity of rain drops is 27.36 m/s              

Three resistors are connected into the section of the circuit described by the diagram. Then the wire is cut at point x, and the two cut ends of the wire are separated. Through which of the three resistors, if any, does current still flow?
A. None of the resistors
B. All three resistors
C. R1 only
D. R1 and R2 only

Answers

Answer:

C. R1 only

Explanation:

As the wire is cut at x, there will be no current through the resistors R2 and R3. Then the current will only go from a to b through the R1 resistor.

Another way to think about this is that once the wire is cut at x, there is now infinite resistance at the point of cutting; therefore, the current can no longer flow through R2 and R3 resistors, but now it only flows through the R1 resistor.

Therefore, only choice C is correct.

Background noise affects hearing tests. In the ticking watch test, what type of result, in terms of auditory sensitivity, would you have recorded if moderate background noise were present?

Answers

Answer: noise that you hear in passing

Explanation:

An electric drill starts from rest and rotates with a constant angular acceleration. After the drill has rotated through a certain angle, the magnitude of the centripetal acceleration of a point on the drill is twice the magnitude of the tangential acceleration. What is the angle?

Answers

Answer:

Explanation:

Given

magnitude of centripetal acceleration is twice the magnitude of tangential acceleration

Suppose [tex]\theta [/tex] is theta angle rotated by electric drill

it is given that it starts from rest i.e. [tex]\omega _0=0[/tex]

suppose [tex]\omega [/tex] and [tex]\alpha [/tex] is the final angular velocity and angular acceleration

using rotational motion equation

[tex]\omega ^2-\omega _0^2=2\times \alpha \times \theta [/tex]

where [tex]\theta [/tex]=angle turned by drill

[tex]\omega _0[/tex]=initial angular velocity

[tex]\omega [/tex]=final angular velocity

[tex]\alpha [/tex]=angular acceleration

[tex]\omega ^2-0=2\times \alpha \times \theta [/tex]

[tex]\omega ^2=2\alpha \theta ---1[/tex]

It is also given that centripetal acceleration is twice the magnitude of tangential i.e.

[tex]\omega ^2r=\alpha \times r[/tex]

where r=radial distance of any point from axis of drill

i.e. [tex]\omega ^2=\alpha [/tex]

substitute this value to equation 1

we get

[tex]\theta =\frac{\omega ^2}{2\alpha }[/tex]

[tex]\theta =1\ rad[/tex]

Water at 1 atm pressure is compressed to 430 atm pressure isothermally. Determine the increase in the density of water. Take the isothermal compressibility of water to be 4.80 × 10−5 atm−1. The density of water at 20°C and 1 atm pressure is rho1 = 998 kg/m3.

Answers

Answer:

Explanation:

compressibility = 1 / bulk modulus of elasticity ( B )

B = 1 / 4.8 x 10⁻⁵ = Δp / Δv /v ( Δp is change in pressure , Δv is change in volume )

1 / 4.8 x 10⁻⁵ = 429  / Δv /v

Δv /v = 429 x 4.8 x 10⁻⁵

= 2059.2 x 10⁻⁵

= .021

v = m / d ( d is density and m is mass of the water taken )

taking log and then differentiating

Δv /v  = - Δd / d

- .021 = - Δd / d

Δd =.021  x d

= .021 x 998

= 20.9

new density

= 998 + 20.9

1018.9 kg/m3

Final answer:

The increase in the density of water when it is compressed from 1 atm to 430 atm pressure isothermally is 20.6 kg/m³.

Explanation:

In this problem, we are asked to find the increase in the density of water when it is compressed from 1 atm to 430 atm pressure isothermally. The isothermal compressibility of water is given as 4.80 × 10−5 atm−1. The density of water at 1 atm pressure and 20°C is given as rho1 = 998 kg/m^3.

The formula that connects these quantities is Δρ = - ρ * β * ΔP, where Δρ is the change in density, β is the isothermal compressibility (in atm^−1), ΔP is the change in pressure (in atm), and ρ is the initial density (in kg/m^3).

Substituting the given values into the formula we get Δρ = - (998 kg/m³) * (4.80 × 10−5 atm−1) * (430 atm - 1 atm) = - ((998 kg/m³) * (4.80 × 10−5 atm−1) * (429 atm)) = -20.6 kg/m^3. The negative sign indicates an increase in density due to compression. So the increase in density of the water is 20.6 kg/m³.

Learn more about Isothermal Compression here:

https://brainly.com/question/33788595

#SPJ3

A motorcycle with two riders weaves dangerously between parked cars in a crowded shopping center parking lot. As the motorcyclists dart between cars, they confront a moving car. Both the car and motorcycle veer to avoid a head-on collision. The motorcycle strikes the side of the oncoming car, throwing riders to the ground. The car stops abruptly, throwing the driver into the windshield. Nearby, Lisa and Paul (two college students) hear the sound of crunching metal and blaring horns and decide to join the small group that has gathered?

Answers

Answer:

a

Explanation:

Answer:

A

Explanation:

A 3.0-kg block starts at rest at the top of a 37° incline, which is 5.0 m long. Its speed when it reaches the bottom is 2.0 m/s. What is the average friction force opposing its motion?

Answers

Answer: [tex]f_{r}[/tex] = 16.49N

Explanation: The object is placed on an inclined plane at an angle of 37° thus making it weight have two component,

[tex]W_{x}[/tex] = horizontal component of the weight = mgsinФ

[tex]W_{y}[/tex] = vertical component of weight = mgcosФ

Due to the way the object is positioned, the horizontal component of force will accelerate the object thus acting as an applied force.

by using newton's law of motion, we have that

mgsinФ - [tex]f_{r}[/tex] = ma

where m = mass of object=5kg

a = acceleration= unknown

Ф = angle of inclination = 37°

g = acceleration due to gravity = 9.8[tex]m/s^{2}[/tex]

[tex]f_{r}[/tex] = frictional force = unknown

we need to first get the acceleration before the frictional force which is gotten by using the equation below

[tex]v^{2} = u^{2} + 2aS[/tex]

where v = final velocity = 2m/s

u = initial velocity = 0m/s (because the object started from rest)

a= unknown

S= distance covered = length of plane = 5m

[tex]2^{2} = 0^{2} + 2*a*5\\\\4= 10 *a\\\\a = \frac{4}{10} \\a = 0.4m/s^{2}[/tex]

we slot in a into the equation below to get frictional force

mgsinФ - [tex]f_{r}[/tex] = ma

3 * 9.8 * sin 37 - [tex]f_{r}[/tex] = 3* 0.4

17.9633 - [tex]f_{r}[/tex] =  1.2

[tex]f_{r}[/tex] = 17.9633 - 1.2

[tex]f_{r}[/tex] = 16.49N

In The Funeral of St. Bonaventure, Francisco de Zurbarán used the principle of __________ to create emphasis and focal point.

Answers

Answer:

In The Funeral of St. Bonaventure, Francisco de Zurbarán used the principle of _contrast_ to create emphasis and focal point

Explanation:

Contrast relates to the combination of opposing components and effects as an art theory. Lighter and darker colours, polished and rough materials, large and small shapes. Contrast can be used for the production of diversity visual interest and excitement.

In what fundamental way did the work of Galileo differ from his predecessors who had thought about the sky?

Answers

Galileo's work differed from his predecessors by relying on experimental evidence and mathematical analysis.

The work of Galileo differed from his predecessors in a fundamental way in terms of his approach to studying the sky. Unlike his predecessors who relied on pure reasoning and philosophical arguments, Galileo used experimental evidence and mathematical analysis to understand the natural phenomena.

For example, Galileo used a telescope to observe the moons of Jupiter, which challenged the prevailing geocentric model of the universe.

Learn more about Galileo's different approach to studying the sky here:

https://brainly.com/question/33887473

#SPJ12

Galileo used telescopes for detailed astronomical observations, challenging prevailing geocentric views, while predecessors relied on eye observations and theories.

Galileo's work differed fundamentally from his predecessors in astronomy by introducing a new method of observation. While his predecessors primarily relied on eye observations and abstract reasoning to understand celestial phenomena, Galileo pioneered the use of telescopes for systematic astronomical observations. By observing celestial objects through telescopes, he made groundbreaking discoveries such as the moons of Jupiter, the phases of Venus, and the mountains and craters on the Moon.

These observations provided concrete evidence that supported the heliocentric model proposed by Copernicus, challenging the geocentric worldview dominant at the time. Galileo's empirical approach and emphasis on experimental evidence marked a departure from traditional reliance on philosophical arguments. His method paved the way for modern observational astronomy, emphasizing the importance of empirical data and observation through telescopes, revolutionizing our understanding of the cosmos.

To know more about geocentric

https://brainly.com/question/32198864

#SPJ12

Describe a situation that includes no less than four charges of any magnitude, but they combine so that another location, p, has no net electric field at that point. Describe where those charges could be or what magnitudes they could be

Answers

Answer:

Four charges of equal magnitude sitting at the vertices of a square

Explanation:

We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.

Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.

We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.

A traffic expert wants to estimate the maximum number of cars that can safely travel on a particular road at a given speed. He assumes that each car is 15 feet long, travels at speed s, and follows the car in front of it at a safe distance for that speed. He finds that the number N of cars that can pass a given spot per minute is modeled by the function N(s)=88s/16+16(s19)2
At what speed can the greatest number of cars travel safely on that road?

Answers

Answer:

Speed s= 19

Explanation:

Take note of the following parameters:

Speed= s,

Number of cars= N,

Number N of cars that can pass a given spot per minute=

N(s)=88s/16+16(s19)2

The principle of differentiation is  here:

We let N(s) = N

N = 86s / (17 + 17((s/19)^2))

17N = 86s /(1 + s²/19²)

17N = 361* 86s /(361 + s²)

17N = 31046s /(361 + s²)

Next step;

Differentiate with respect to s

17N = 31046s /(361 + s²)

Remember the quotient rule [u/v]’ = (vu’ - uv’) / v²

Therefore,

u = 31046s =====> du/ds = u’ = 31046

v = (361 + s²) ====>dv/ds = v’ = 2s

17N = 31046s /(361 + s²)

17 dN/ds = ( 31046(361 + s²) - 31046s(2s) ) / (361 + s²)²

The maximum when dN/ds = 0

17 dN/ds = ( 31046(361 + s²) - 31046s(2s) ) / (361 + s²)²

17 * 0 = ( 31046(361 + s²) - 31046s(2s) ) / (361 + s²)²

( 31046(361 + s²) - 31046s(2s) ) = 0

31046 [ (361 + s²) - 2s² ] = 0

31046 (361 - s²) = 0

(361 - s²) = 0

(19 - s)(19 + s) = 0

either s = -19 or s = 19, but s > 0

s = 19

The speed at which the greatest number of cars travel safely on that road is; s = 19

What is the speed required?

We are given the function to represent Number N of cars that can pass a given spot per minute as;

N(s) = 88s/(16 + 16(s/19)²)

where;

s is Speed

N is number of cars

Differentiating the function gives;

N' = -3971(s² - 361)/(2(s² + 361)²

Now, the speed at the greatest number of cars would be gotten when N' = 0. Thus;

-3971(s² - 361)/(2(s² + 361)² = 0

Cross multiply to get;

-3971(s² - 361) = 0

divide both sides by -3971 to get;

s² - 361 = 0

s = √361

s = 19

Read more about required speed at; https://brainly.com/question/2284817

A rectangular block floats in pure water with 0.400 in. above the surface and 1.60 in. below the surface. When placed in an aqueous solution, the block of material floats with 0.800 in. below the surface. Estimate the specific gravities of the block and the solution.

Answers

Answer:

specific gravity = 0.8

specific gravity of  solution  = 2

Explanation:

given data

rectangular block above water  = 0.400 in

rectangular block below water = 1.60 in

material floats below water = 0.800 in

solution

first we get here specific gravity of block  that is

specific gravity = block vol below ÷ total block vol × specific gravity  water   ..............1

put here value we get

specific gravity =  [tex]\frac{1.60}{1.60+0.400}[/tex]  × 1

specific gravity = 0.8

and now we get here specific gravity of  solution  that is express as

specific gravity of  solution  = total block vol ÷ block vol below × specific gravity  block   ........................2

put here value we get

specific gravity of  solution  = [tex]\frac{1.60+0.400}{0.800}[/tex] × 0.8

specific gravity of  solution  = 2

A record is spinning at the rate of 25rpm. If a ladybug is sitting 10cm from the center of the record.

A-What is the rotational speed of the ladybug? (in rev/sec)
B-What is the frequency of the ladybug's revolutions? (in Hz)
C-What is the tangential speed of the ladybug? (in cm/sec)
D-After 20 seconds. how far has the ladybug traveled? (in cm)

Answers

A) Angular speed: 0.42 rev/s

B) Frequency: 0.42 Hz

C) Tangential speed: 26.4 cm/s

D) Distance travelled: 528 cm

Explanation:

A)

In this problem, the ladybug is rotating together with the record.

The angular velocity of the ladybug, which is defined as the rate of change of the angular position of the ladybug, in this problem is

[tex]\omega = 25 rpm[/tex]

where here it is measured in revolutions per minute.

Keeping in mind that

1 minute = 60 seconds

We can rewrite the angular speed in revolutions per second:

[tex]\omega = 25 \frac{rev}{min} \cdot \frac{1}{60 s/min}=0.42 rev/s[/tex]

B)

The relationship between angular speed and frequency of revolution for a rotational motion is given by the equation

[tex]\omega = 2 \pi f[/tex] (1)

where

[tex]\omega[/tex] is the angular speed

f is the frequency of revolution

For the ladybug in this problem,

[tex]\omega=0.42 rev/s[/tex]

Keeping in mind that [tex]1 rev = 2\pi rad[/tex], the angular speed can be rewritten as

[tex]\omega = 0.42 \frac{rev}{s} \cdot 2\pi = 2\pi \cdot 0.42[/tex]

And re-arranginf eq.(1), we can find the frequency:

[tex]f=\frac{\omega}{2\pi}=\frac{(2\pi)0.42}{2\pi}=0.42 Hz[/tex]

And the frequency is the number of complete revolutions made per second.

C)

For an object in circular motion, the tangential speed is related to the angular speed by the equation

[tex]v=\omega r[/tex]

where

[tex]\omega[/tex] is the angular speed

v is the tangential speed

r is the distance of the object from the axis of rotation

For the ladybug here,

[tex]\omega = 2\pi \cdot 0.42 rad/s[/tex] is the angular speed

r = 10 cm = 0.10 m is the distance from the center of the record

So, its tangential speed is

[tex]v=(2\pi \cdot 0.42)(0.10)=0.264 m/s = 26.4 cm/s[/tex]

D)

The tangential speed of the ladybug in this motion is constant (because the angular speed is also constant), so we can find the distance travelled using the equation for uniform motion:

[tex]d=vt[/tex]

where

v is the tangential speed

t is the time elapsed

Here we have:

v = 26.4 cm/s (tangential speed)

t = 20 s

Therefoe, the distance covered by the ladybug is

[tex]d=(26.4)(20)=528 cm[/tex]

Learn more about circular motion:

brainly.com/question/9575487

brainly.com/question/9329700

brainly.com/question/2506028

#LearnwithBrainly

Calculate the annual potential energy contained in the water that is held back by the dam. Assume an average height of the water, h of 100.0 m. Express the answer in GJ (at least three significant figures).

Answers

Answer:

The potential energy can be given as

E = mgh. m is mass, g = acceleration due to gravity = 9.8m/s, h is the heigh, given as 100.0m

E = m x 9.8 x 100 = (980m)J

E = (980m)/10^9GJ = (0.000000980m)GJ to 3 significant figures

Explanation:

Hydroelectric dams exploit storage of gravitational potential energy. A mass, m, raised a height, h against gravity, g = 9.8 m/s², is given a potential energy E = mgh. The result will be in Joules if the input is expressed in meters, kilograms, and seconds (MKS, or SI units).

If a substance can be separated by physical means and it is not the same throughout, what is it?

A: a homogeneous solution

B: a heterogeneous mixture

C: a pure substance

D: an element

E: a compound

Answers

Answer:

Option (B)

Explanation:

A heterogeneous mixture is usually defined as a combination of two or more chemical substances. It can be also elements as well as compounds. These contrasting components can be easily separated from one another by means of physical process. These are comprised of substances that are not even everywhere. There is variation in it.

Thus, the correct answer is option (B).

Answer:

B: a heterogeneous mixture

Explanation:

If the components of a substance can be separated by the physical means then the substance is a mixture and its component have not undergone any kind of chemical change with their original molecular structure.

The mixtures are of two types homogeneous and heterogeneous.

Homogeneous mixtures have a uniform composition of its components throughout the mixture whereas heterogeneous mixtures have a non-uniform composition of its constituents in the mixture.

u are holding the axle of a bicycle wheel with radius30 cm and mass 1.05 kg. You get the wheel spinning at arate of 77 rpm and then stop it by pressing the tire againstthe pavement. You notice that it takes 1.37 s for the wheelto come to a complete stop. What is the angular accelerationof the wheel

Answers

Answer:

-5.9 rad/s^{2}

Explanation:

radius (r) = 30 cm = 0.3 m

mass (m) = 1.05 kg

initial speed (u) = 77 rpm

final speed (v) = 0 rpm

time (t) = 1.37 s

angular acceleration =[tex]\frac{(final speed-initial speed)rad/s}{time}[/tex]

therefore

initial speed (U) = 77 rpm = 77 x (2π/60) = 8.06 rad/s

final speed (v) = 0 rpm = 0 rad/s

angular acceleration = [tex]\frac{0-8.06}{1.37}[/tex] = -5.9 rad/s^{2}

Answer:

-5.886 rad/s^2.

Explanation:

radius, r = 30 cm

= 0.3 m

mass, m

= 1.05 kg

initial speed, wo = 77 rpm

Converting from rpm to rad/s,

= 77 rpm * 2pi rad * 1 min/60 s

= 8.063 rad/s

final speed, wi = 0 rad/s

time, t = 1.37 s

angular acceleration = Δw/Δt

= (wi - wo)/t

= 8.063/1.37

= -5.886 rad/s^2.

To have a negative ion, you must have: A. added a positron to the outer electron shell. B. taken away a proton from the nucleus. C. added an electron to the outer electron shell. D. added a positron to the nucleus. E. None of these; only positive ions can exist in nature.

Answers

C. added an electron to the outer electron shell.

Explanation:

Atoms consist of three particles:

- Protons: they are located in the nucleus, they have positive charge of [tex]+e[/tex], and mass of [tex]1.67\cdot 10^{-27}kg[/tex]

- Neutrons: they are also located in the nucleus, they have no electric charge, and mass similar to that of the proton

- Electrons: they orbit around the nucleus, they have negative charge of [tex]-e[/tex], and mass around 1800 smaller than the proton

Normally, atoms are neutral (no electric charge), because they have an equal number of protons and electrons.

However, sometimes atoms can give off or take electrons from other atoms. We have two cases:

If an atom gives off an electron, it remains with an excess of positive charge, so it becomes a positive ionIf an atom takes an electron from another atom, it remains with an excess of negative charge, so it becomes a negative ion

Therefore, in order to form a negative ion, the atom must have

C. added an electron to the outer electron shell

Learn more about atoms:

brainly.com/question/2757829

#LearnwithBrainly

Which of the following are molecules?

Answers

Answer:

b c and e

Explanation:

Answer: C, D, and E are all molecules!

We should stress again that the Carnot engine does not exist in real life: It is a purely theoretical device, useful for understanding the limitations of heat engines. Real engines never operate on the Carnot cycle; their efficiency is hence lower than that of the Carnot engine. However, no attempts to build a Carnot engine are being made. Why is that?
A) A Carnot engine would generate too much thermal pollution.
B) Building the Carnot engine is possible but is too expensive.
C) The Carnot engine has zero power.
D) The Carnot engine has too low an efficiency.

Answers

Answer:c

Explanation:

Although the Carnot engine is the most efficient it is not feasible in real life. Carnot engine contains processes that are reversible which makes it difficult to build in real life.

For a system to be in equilibrium a system must be in equilibrium with its surroundings in each step and every step which allows it to be infinitely slow.

Due to this slow rate Power of the engine is zero as the work is being done at an infinitely slow rate.

Answer:

good

Explanation:

Vector A is 3.00 units in length and points along the positive x-axis. Vector B is 4.00 units in length and points along the negative y-axis. Use graphical methods to find the magnitude and direction of the following vectors:

Answers

Final answer:

To find the magnitude and direction of the resultant vector R, we can use graphical methods. First, find the components of vectors A and B along the x and y axes. Then, use the Pythagorean theorem to find the magnitude of R and the inverse tangent function to find the direction of R.

Explanation:

To find the magnitude and direction of the resultant Vector B, with a magnitude of 4 units, points along the negative y-axis, so its x-component is 0 and its y-component is -4.

To find the components of R, we can simply add the corresponding components of A and B: Rx = Ax + Bx

= 3 + 0 = 3, Ry = Ay + By = 0 + (-4) = -4.

Using the Pythagorean theorem, we can find the magnitude of R: R = sqrt(Rx^2 + Ry^2)

= sqrt(3^2 + (-4)^2) = sqrt(9 + 16) = sqrt(25) = 5 units.

To find the direction of R, we can use the inverse tangent function: Rtheta = atan(Ry/Rx)

= atan((-4)/3)

= atan(-4/3) = -53.13 degrees.

However, since vector B points along the negative y-axis, the direction of R is 90 degrees minus the calculated angle: Rtheta = 90 - 53.13 = 36.87 degrees.

Therefore, the magnitude of R is 5 units and it points at an angle of 36.87 degrees north of the x-axis.

A car is traveling at 33.0 m/s when the driver uses the brakes to slow down to 29.0 m/s in 2.50 seconds. How many meters will it travel during that time?

Answers

Distance traveled during that time is 77.5 m  

Explanation:

We have equation of motion v = u + at

     Initial velocity, u = 33 m/s

     Final velocity, v = 29 m/s    

     Time, t = 2.50 s

     Substituting

                      v = u + at  

                      29 = 33 + a x 2.50

                      a = -1.6 m/s²

We have equation of motion v² = u² + 2as

Initial velocity, u = 33 m/s  

Acceleration, a = -1.6 m/s²  

Final velocity, v = 29 m/s  

Substituting  

v² = u² + 2as

29² = 33² + 2 x -1.6 x s

s = 77.5 m  

Distance traveled during that time is 77.5 m  

Final answer:

The car will travel 77.5 meters while decelerating from 33.0 m/s to 29.0 m/s over a period of 2.50 seconds by using the average speed during the deceleration period.

Explanation:

The question deals with calculating the distance covered by a car while decelerating from 33.0 m/s to 29.0 m/s over 2.50 seconds. We can solve this by finding the car's average speed during this period and multiplying it by the time duration. Here's how we can solve it:

Step-by-Step Calculation

Find the average speed: (Initial speed + Final speed) / 2 = (33.0 m/s + 29.0 m/s) / 2 = 31.0 m/s.

Multiply the average speed by the time taken to decelerate to find the distance covered: Distance = Average speed * Time = 31.0 m/s * 2.50 s = 77.5 meters.

Therefore, the car will travel 77.5 meters during that time.

A water break at the entrance to a harbor consists of a rock barrier with a 50.0-m-wide opening. Ocean waves of 20.0-m wavelength approach the opening straight on. At what angles to the incident direction are the boats inside the harbor most protected against wave action?

Answers

The angles to the incident direction are the boats inside the harbor most protected against wave action will be  23.57 °

What is diffraction ?

Diffraction is the phenomenon that occur when a wave of light encounter an obstacle or a slit generally.

considering wide opening of harbor as thickness d

the ocean wave as light source (coherent )

boats inside the harbor as screen where diffraction pattern is going to happen

so , destructive interference  should happen (to minimize the amplitude of wave ) in order to save the boats from its effect

n * lambda = d sin (theta )

n=1  ( first  order minima )

sin(theta ) = lambda / d

sin( theta ) = 20 /50

sin(theta) = 2/5

theta = sin inverse (2/5)

theta = 23.57 °

The angles to the incident direction are the boats inside the harbor most protected against wave action will be  23.57 °

learn more about diffraction

https://brainly.com/question/12290582?referrer=searchResults

#SPJ3

What is the unit of measurement that defines the space available in a rack? How tall are standard racks?

Answers

Answer:

The unit of measurement that defines the space available in a rack are  the inches for the width and for the height the units of Rack (U), this unit is equivalent to 44.45 mm.  Standard racks are 19 inches wide and 42U high. A rack is a type of shelf where servers can be stacked on top of each other.

Final answer:

The unit of measurement that defines rack space is 'rack unit' or 'U', with each unit equal to 1.75 inches or 44.45 millimeters. Standard racks can have different heights, with 42U being the most common.

Explanation:

The unit of measurement that defines the space available in a rack is called 'rack unit' or 'U'. Each rack unit is equal to 1.75 inches or 44.45 millimeters. So, when we talk about the height of a standard rack, we refer to the number of rack units it can accommodate.

The height of standard racks can vary, but the most common height for a rack is 42U, which means it can accommodate equipment up to 73.5 inches or 1866.9 millimeters tall. Other common rack heights include 48U and 45U.

Learn more about Rack space here:

https://brainly.com/question/32272324

#SPJ3

Help please!

What is the fundamental (smallest) unit of charge possible and where does it come from?

Answers

Answer:

It is called the elementary charge

Explanation:

Charge is quantized; it comes in integer multiples of individual small units called the elementary charge, e, about 1.602×10−19 coulombs, which is the smallest charge which can exist freely

I hope you find your answer from this ,

A train, traveling at a constant speed of 25.8 m/s, comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.66 m/s². What is the speed of the train after 8.30 s on the incline?

Answers

The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.

Answer:

Explanation:

So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.

So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then

v = 25.8 + (-1.66×8.3)

v =12.022 m/s.

So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.

If you fire a projectile from the ground, it hits the ground some distance R away (called "the range"). If you keep the launch angle fixed, but double the initial launch speed, what happens to the range?

Answers

Answer:

range becomes 4 times

Explanation:

We know that the range of a projectile is given as:

[tex]R=\frac{u^2.\sin(2\theta)}{g}[/tex]

where:

[tex]R=[/tex] range of the projectile

[tex]u=[/tex] initial velocity of projectile

[tex]\theta=[/tex] initial angle of projection form the horizontal

g = acceleration due to gravity

When the initial velocity of launch is doubled:

[tex]R'=\frac{(2u)^2.\sin(2\theta)}{g}[/tex]

[tex]R'=\frac{4u^2.\sin(2\theta)}{g}[/tex]

[tex]R'=4R[/tex]

range becomes 4 times

Final answer:

Doubling the initial launch speed of a projectile, while keeping the angle of launch fixed, results in the range being quadrupled.

Explanation:

The range R of a projectile motion is given by the formula R = ((v^2)*sin(2*theta))/g, where v is the initial launch speed, theta is the launch angle, and g is the acceleration due to gravity. If the initial launch speed v is doubled, the new range R' would be R' = ((2v)^2)*sin(2*theta))/g, which simplifies to R' = 4R.

Thus, if you double the initial launch speed, the range of the projectile is quadrupled, assuming the launch angle is fixed.

Learn more about Projectile Motion here:

https://brainly.com/question/20627626

#SPJ3

A uniform plank of length 6.1 m and mass 33 kg rests horizontally on a scaffold, with 1.6 m of the plank hanging over one end of the scaffold. L l x How far can a painter of mass 60 kg walk on the overhanging part of the plank x before it tips? The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.

Answers

Answer:

Explanation:

consider the principle of moment

when a system is in equilibrium, the clockwise moment (torque) about the pivot is equal to the counterclockwise moment ( torque). Since the plank is uniform the weight of the plank act at the middle which = 6.1 m / 2 = 3.05 m

the distance that can support the weight of the man = d

mass of the man = 70

70 × d = 33 × ( 3.05 - 1.6)

d = 47.85 / 60 = 0.798 m, if the man work beyond this point he will fall.

What is the physical meaning of the physics equation of a spring force vs displacement graph?

Answers

Explanation:

The force of a spring is described by Hooke's law:

F = kx

where k is the spring stiffness in N/m, and x is the displacement in m.

A spring force vs displacement graph is a line passing through the origin with a slope of k.

Final answer:

A spring force vs. displacement graph represents Hooke's law, showing the restorative force exerted by a spring as it is deformed. The slope of the straight line on the graph is the spring's force constant 'k'. The area under the line represents the work done on the spring.

Explanation:

Physical Meaning of Spring Force vs. Displacement

The physical meaning of a spring force vs. displacement graph is that it shows how the force exerted by a spring changes as the spring is stretched or compressed. This relationship is governed by Hooke's law, which states that the force (F) exerted by a spring is directly proportional to the displacement (x) from its equilibrium position, given by the equation F = -kx. Here, 'k' is the spring's force constant, representing its stiffness, with units of newtons per meter (N/m). The negative sign indicates that the force is restorative, meaning it acts in the opposite direction of displacement.

The graph typically portrays a straight line passing through the origin, with the slope equivalent to the spring's force constant 'k'. The steeper the slope, the greater the force constant, and vice versa. Additionally, the work done on the spring, which is equal to the energy stored in it, can be calculated from the area under the force versus displacement graph, given by W = (1/2)kx², where W is the work done and x is the displacement.

A model airplane with mass 0.750-kg is tethered by a wire so that it flies in a circle of radius 30.0-m. The airplane engine provides a force of 0.800-N perpendicular to the tethering wire. (Consider the airplane to be a point mass) (a) Find the torque that the net thrust produces about the center of the circle. (b) Find the angular acceleration of the airplane. (c) Find the linear acceleration of the airplane tangent to its flight path.

Answers

Answer:

a) 24.0 N.m b) 3.6*10⁻² rad/s² c) 1.07 m/s²

Explanation:

a) If the force that produces the torque is perpendicular to the tethering wire, we can determine its magnitude just as follows:

τ = F*r = 0.800 N * 30.0 m = 24.0 N*m (1)

b)  We can express the torque we found above, using the rotational form of Newton´s 2nd Law, as follows:

τ = I* α (2)

where I is the rotational inertia regarding an axis passing through the center of the circle and α is the angular acceleration of the airplane.

If we consider the airplane as a point mass, the rotational inertia I can be calculated as follows:

I = m*r² = 0.750 Kg * (30.0)² m² = 675 Kg*m²

From (1) and (2), we can solve for α, as follows:

[tex]\alpha = \frac{T}{I} = \frac{24.0 N*m}{675.0 kg*m2} = (3.6e-2) rad/s2[/tex]

α = 3.6*10⁻² rad/s²

c) Applying the definition of the angular velocity, and the definition of an angle, we can find the following realtionship between the linear and angular velocity:

v = ω*r

Dividing both sides by Δt, we can extend this relationship to the linear and angular acceleration, as follows:

a = α*r  

a = 3.6*10⁻² rad/s²* 30.0 m = 1.07 m/s²

a. The torque that the net thrust produces about the center of the circle is 24 Newton.

b. The angular acceleration of the airplane is equal to [tex]0.036 \;rad/s^2[/tex]

c. The linear acceleration of the airplane tangent to its flight path is[tex]1.08 \;m/s^2[/tex]

Given the following data:

Mass of airplane = 0.750 kgRadius = 30.0 mForce = 0.800 Newton

a. To find the torque that the net thrust produces about the center of the circle:

Mathematically, the torque produced by a perpendicular force is given by:

[tex]T = Fr[/tex]

Where:

T is the torque.F is the perpendicular force.r is the radius.

Substituting the given parameters into the formula, we have;

[tex]T = 0.8 \times 30[/tex]

Torque, T = 24 Newton

b. To find the angular acceleration of the airplane, we would use Newton's Second Law of rotational motion:

[tex]T = I\alpha[/tex]

But, [tex]I = mr^2[/tex]

[tex]I = 0.750 \times 30^2\\\\I = 0.750 \times 900[/tex]

Moment of inertia, I =  [tex]675\;Kgm^2[/tex]

[tex]\alpha = \frac{T}{I} \\\\\alpha = \frac{24}{675}\\\\\alpha = 0.036 \;rad/s^2[/tex]

c. To find the linear acceleration of the airplane tangent to its flight path:

[tex]a = r\alpha \\\\a = 30 \times 0.036[/tex]

Linear acceleration, a = [tex]1.08 \;m/s^2[/tex]

Read more: https://brainly.com/question/14703849

Other Questions
From the choices provided below, list the reagent(s) in order that will react with 3-pentanone to form 3-phenyl-2-pentene. (List your answer as a letter (single-step transformation), or series of letters (multi-step transformation) in the order the reagents are used, with no commas separating them. No more than four steps are required for this synthesis.)a. H2 / Pt e. 1. PhMgBr 2. H3O+b. H2SO4, f. H3O+c. OsO4, H2O2 g. RCO3Hd. 1. ch3mgbr2. h30+ h. KOH 9.Which of the following is a means of transmitting HIV from one person to another?A. insect bitesB. airborne transmissionC. casual contactD. through a mothers breast milk The information below should be used to prepare (in proper form in Excel) a Public Transportation column for the proprietary fund Statement of Revenues, Expenses, and Changes in Fund Net Position for the fiscal year ending May 31, 2018. Operating Revenue (Services) $25,705,000 Interest Revenue $36,000 Intergovernmental Revenue $140,000 Capital Contributions $1,200,000 Operating Expenses: Employee Wages $8,654,000 Temporary Labor $750,000 Repairs and Maintenance $6,425,000 Depreciation $4,532,000 Utilities $948,000 Interest Expense $475,000 Transfer to General Fund $315,000 Net position, June 1, 2017 $3,820,000 Please also answer the following questions in MS Word: What observations can you make about the funds activity from June 1, 2017-May 31, 2018? Identify the other proprietary fund statements and what measurement focus and basis for accounting are used in those statements. What reports and schedules are included in the CAFR as required supplementary information? Find the value of c such that the expression is a perfect-square trinomialx^2+6x+cc= __ A manometer containing a fluid with a density of 60 lbm/ft3 is attached to a tank filled with air. If the gage pressure of the air in the tank is 9.4 psig and the atmospheric pressure is 12.5 psia, the fluid-level difference between the two columns, h, in feet is Topik is a product that is sprayed on thinning hair and makes the hair appear thicker. The manufacturer considers its potential market to be blue-collar workers who earn less than $30,000 per year, are divorced, and who like to think of themselves as weekend athletes. The manufacturer of Topik considers this group to be its:(A) population(B) sample(C) target market(D) demand group(E) utility market(F) package group The basic units of the brain and spinal cord that process, store, and transmit information are the _____. Which one of mafic or felsic has a higher melting point which of these is a way hexadecimal is commonly used in computing? A. represent IPv6 network address. B. communicate with the CPU.C. exchange data with peripherals. D. to represent sound waves In classical conditioning, the _____ is an irrelevant event that comes to trigger a conditioned response after association with an unconditioned stimulus. A reducing agent gets oxidized as it reacts. A reducing agent gets oxidized as it reacts. true false What is 15.35=x -1.84 Any answers are appreciated. In science, what are the characteristics of a stable society? in a multitasking system, the context-switch time is 1ms and the time slice is 10ms. Will the CPU efficiency increase or decrease when we increase the time slice to 15ms? Explain why. Summarize one or two of the Big 5 traits and give evidence from your life to support or dispute how this personality test describes you. The Big 5 traits are: Neuroticism, Extraversion, Openness to Experience, Agreeableness, and Conscientiousness. which evidence supports the inference that Nora is afraid of losing her relationship with her husband? 1) ""no idea what a dangerous condition he was in"" 2) ""how I cam to devise a way out of the difficulty"" 3) ""I had meant to let him in on the secret"" 4) ""It would upset our mutual relations altogether Solve algebraically for x:3(x+1)-5x=12-(6x-7) Name two kinds of rocks formed by conduction of energy. A box is initially at the top of a slide, storing 80 J of gravitational energy. The isolated system includes the box, slide and earth.As the box slides down the frictionless slide, what happens to the total energy of the system?1-the isolates system stores slightly less than 80 J of total energy, and it is converted to a different form of energy2- The isolated system stores 80 J of total energy, but it is converted to a different foe of energy 3- The total energy of the system increases to more than 80 J as it gains other forms of energy4- The total energy of isolated system decreases to 0 once the box reaches the bottom of the slide Tracy has 26 pennies mark has 29 pennies who has the greater number of pennies