A toy helicopter is flying in a straight line at a constant speed of 4.5 m/s. If a projectile is launched vertically with an initial speed of v0 = 28 m/s, what horizontal distance d should the helicopter be from the launch site S if the projectile is to be traveling downward when it strikes the helicopter? Assume that the projectile travels only in the vertical direction.

Answers

Answer 1

Final answer:

To find the horizontal distance, we use the equation d = horizontal velocity * T, where T is the time of flight. Using the given values, the horizontal distance is 25.71 m.

Explanation:

To determine the horizontal distance the helicopter should be from the launch site, we need to find the time it takes for the projectile to reach the helicopter. Since the projectile only travels in the vertical direction, we can use the equation:

T = (2 * v0) / g

where T is the time of flight, v0 is the initial vertical velocity, and g is the acceleration due to gravity. Plugging in the values, we get:

T = (2 * 28 m/s) / 9.8 m/s^2 = 5.71 s

Now, we can find the horizontal distance using the equation:

d = horizontal velocity * T

The horizontal velocity of the helicopter is its constant speed, which is 4.5 m/s. Plugging in the values, we get:

d = 4.5 m/s * 5.71 s = 25.71 m


Related Questions

The temperature of a sample of silver increased by 24.0 °C when 269 J of heat was applied. What is the mass of the sample?

Answers

Answer:

Mass of the silver will be equal to 46.70 gram

Explanation:

We have given heat required to raise the temperature of silver by 24°C is 269 J , so [tex]\Delta T=24^{\circ}C[/tex]

Specific heat of silver = 0.240 J/gram°C

We have to find the mass of silver

We know that heat required is given by

[tex]Q=mc\Delta T[/tex], here m is mass, c is specific heat of silver and [tex]\Delta T[/tex] is rise in temperature

So [tex]269=m\times 0.240\times 24[/tex]

m = 46.70 gram

So mass of the silver will be equal to 46.70 gram

Distinguish between a meteor, a meteoroid, and a meteorite.

Answers

Answer:

The distinction can be understood by their individual definitions given below.

Explanation:

A meteoroid is a small rocky/metallic body that can be found in outer space (space beyond the Earth's atmosphere). Their sizes are much smaller than asteroids (often called planetoids) and even more smaller than that of any planets or their moons. They generally originate from comets, asteroids (fragments of them) and even from planets or moons when there occurs heavy collisions.

A meteor is basically what we know to be "shooting stars". When a meteoroid, asteroid, etc. passes through the Earth's atmosphere, they heat up and begin to glow because of the frictional force experienced due to gas molecules in the atmosphere. But the important thing is that they do not reach the surface of the Earth as they completely burn out long before coming close. If some object does manage to reach the Earth's surface, we then call it a meteorite.

(These definitions are not restricted to the Earth but applies to all panets and moons.)

(Also check the gif provided here: https://en.wikipedia.org/wiki/Meteoroid)

A vector that is 7.1 units long and a vector that is 5.0 units long are added. Their sum is a vector 7.6 units long. (a) Show graphically at least one way that the vectors can be added. (Do this on paper. Your instructor may ask you to turn in this work.) (b) Using your sketch in Part (a), determine the angle between the original two vectors. °

Answers

Answer:

[tex]\theta=119.8138^{\circ}[/tex]

Explanation:

Given:

magnitude of first vector, [tex]A=7.1\ units[/tex]magnitude of second vector, [tex]B=5.0\ units[/tex]resultant of magnitude of the two vectors, [tex]R=7.6\ units[/tex]

a)

From the vector addition rule we know:

[tex]R^2={A^2+B^2+2A.B\cos\theta}[/tex]

where

[tex]\theta=[/tex] angle between the two vectors with their tail at common point.

b)

Putting respective values:

[tex]7.6^2=7.1^2+5^2+7.1\times 5\times \cos \theta[/tex]

[tex]\theta=119.8138^{\circ}[/tex]

Final answer:

To add the two vectors, draw them graphically and connect the tip of one vector to the tail of the other. The angle between the original two vectors can be determined using the adjacent and hypotenuse sides of a right triangle.

Explanation:Part (a)

To add the two vectors, draw the first vector as a line segment with a length of 7.1 units and draw the second vector as a line segment with a length of 5.0 units. Place the tail of the second vector at the tip of the first vector. The sum of the two vectors is the line segment connecting the tail of the first vector to the tip of the second vector. This sum vector should have a length of 7.6 units, as mentioned in the question.

Part (b)

Using the sketch from Part (a), draw a horizontal line from the tail of the first vector to the tip of the second vector. Next, draw a vertical line from the tip of the first vector to the tip of the second vector. Connect the tail of the first vector to the tip of the second vector to form a right triangle. The angle between the original two vectors is the angle opposite to the horizontal line. To determine this angle, we can use the trigonometric inverse function. Let's call the angle 'theta'. We have the adjacent side as 5.0 units and the hypotenuse as 7.6 units. Using the arccosine function (inverse cosine), we can calculate theta using the equation: theta = arccos(5.0/7.6).

Learn more about Adding vectors here:

https://brainly.com/question/32196545

#SPJ3

A spherical conductor has a radius of 14.0 cm and a charge of 42.0 µC. Calculate the electric field and the electric potential at the following distances from the center. (a) r = 8.0 cm magnitude direction electric field MN/C electric potential MV (b) r = 30.0 cm magnitude direction electric field MN/C electric potential MV (c) r = 14.0 cm magnitude direction electric field MN/C electric potential MV

Answers

Answer:

0 MN/C, 2.697 MV

4.1953 MN/C, 1.2586 MV

19.2642857143 MN/C, 2.697 MV

Explanation:

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

Electric field at r = 8 cm

E = 0 (inside)

Electric potential is given by

[tex]V=\dfrac{kq}{R}\\\Rightarrow V=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.14}\\\Rightarrow V=2697000\ V=2.697\ MV[/tex]

Electric potential is 2.697 MV

r = 30 cm

[tex]E=\dfrac{kq}{r^2}\\\Rightarrow E=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.3^2}\\\Rightarrow E=4195333.33\ MN/C=4.1953\ MN/C[/tex]

Electric field is 4.1953 MN/C

[tex]V=\dfrac{kq}{r}\\\Rightarrow V=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.3}\\\Rightarrow V=1258600\ V=1.2586\ MV[/tex]

Electric potential is 1.2586 MV

r = R = 14 cm

[tex]E=\dfrac{kq}{r^2}\\\Rightarrow E=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.14^2}\\\Rightarrow E=19264285.7143\ N/C=19.2642857143\ MN/C[/tex]

The electric field is 19.2642857143 MN/C

[tex]V=\dfrac{kq}{r}\\\Rightarrow V=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.14}\\\Rightarrow V=2697000\ V=2.697\ MV[/tex]

The potential is 2.697 MV

Final answer:

To calculate the electric field and electric potential at different distances from the center of a spherical conductor, use the equations for electric field and electric potential due to a point charge. At a distance of 8.0 cm, the electric field is 7.87 * 10^3 N/C and the electric potential is 5.25 kV. At a distance of 30.0 cm, the electric field is 1.26 * 10^3 N/C, but the electric potential cannot be calculated without a reference point. At 14.0 cm, the electric field and electric potential are zero.

Explanation:

To calculate the electric field and electric potential at different distances from the center of a spherical conductor with a radius of 14.0 cm and a charge of 42.0 µC, we can use the equations for electric field and electric potential due to a point charge.

(a) At a distance of 8.0 cm from the center, the magnitude of the electric field can be calculated using the equation:

E = k * (Q/r²)

Substituting the given values, we get:

E = (9 * 10^9 Nm²/C²) * (42 * 10^-6 C) / (0.08 m)² = 7.87 * 10^3 N/C

To calculate the electric potential at this distance, we can use the equation:

V = k * (Q/r)

Substituting the given values, we get:

V = (9 * 10^9 Nm²/C²) * (42 * 10^-6 C) / (0.08 m) = 5.25 kV

(b) At a distance of 30.0 cm from the center, the magnitude of the electric field can be calculated in the same way:

E = (9 * 10^9 Nm²/C²) * (42 * 10^-6 C) / (0.3 m)² = 1.26 * 10^3 N/C

But the electric potential at this distance cannot be calculated using the given information, as we need the reference point for potential measurement.

(c) At a distance of 14.0 cm (the radius of the conductor) from the center, the electric field and electric potential are zero, as the conductor is in electrostatic equilibrium.

Learn more about Electric Field and Electric Potential here:

https://brainly.com/question/34973156

#SPJ6

A square steel bar has a length of 9.8 ftft and a 2.6 inin by 2.6 inin cross section and is subjected to axial tension. The final length is 9.80554 ftnt . The final side length is 2.59952 in in . What is Poisson's ratio for the material? Express your answer to three significant figures.

Answers

To solve this problem we will apply the concept related to the Poisson ratio for which the longitudinal strains are related, versus the transversal strains.  First we need to calculate the longitudinal strain as follows

[tex]\epsilon_x = \frac{l_f-l_i}{l_i}[/tex]

[tex]\epsilon_x = \frac{(9.80554)-(9.8)}{9.8}[/tex]

[tex]\epsilon_x = 0.0005653[/tex]

Second we will calculate the lateral strain as follows

[tex]\epsilon_y = \frac{a_f-a_i}{a_i}[/tex]

[tex]\epsilon_y = \frac{2.59952-2.6}{2.6}[/tex]

[tex]\epsilon_y = -0.0001846153[/tex]

The Poisson's ratio is the relation between the two previous strain, then,

[tex]\upsilon = -\frac{\epsilon_y}{\epsilon_x}[/tex]

[tex]\upsilon = -\frac{(-0.0001846153)}{0.0005653}[/tex]

[tex]\upsilon = 0.3265[/tex]

Therefore the Poisson's ratio for the material is 0.3265

Suppose that at room temperature, a certain aluminum bar is 1.0000 m long. The bar gets longer when its temperature is raised. The length l of the bar obeys the following relation: l=1.0000+2.4×10−5T, where T is the number of degrees Celsius above room temperature. What is the change of the bar's length if the temperature is raised to 16.1 ∘C above room temperature?

Answers

Answer:

The change of the bar's length is [tex] 3.9\times10^{-4} m[/tex]

Explanation:

The bar length is a function of temperature T above room temperature:

[tex] L(T)=1.0000+2.4\times10^{-5} T[/tex]

So, if we evaluate at T= 16.1 C above room temperature

[tex]L(16.1)=1.0000+2.4\times10^{-5} (16.1)[/tex]

[tex]L=1.00039 m [/tex]

Now we can find the change of the bar length with the difference of L and Lo (the length at room temperature)

[tex]L- L_0=1.00039-1.0000 = 3.9\times10^{-4} m[/tex]

A train leaves the train station at noon and travels at a constant speed of vt = 50 mi/hr on a straight track. 2 hr later, a car leaves the same train station and travels in the same direction at vc = 70 mi/hr on a road next to the train track. How far from the station is the place where the car catches up with the train? x =

Answers

Final answer:

The distance from the train station where the car catches up with the train is 250 miles.

Explanation:

To find the distance from the train station where the car catches up with the train, we need to determine the time it takes for the car to catch up.

Let's assume the car catches up with the train after t hours. Since the train leaves 2 hours before the car, the train has already been traveling for t + 2 hours.

Distance traveled by the train = speed of the train × time = 50t + 100 miles

Distance traveled by the car = speed of the car × time = 70t miles

Since the car catches up with the train, the distances traveled by both must be equal. Equating the distances, we get:

50t + 100 = 70t

20t = 100

t = 5

Now, substitute the value of t back into one of the distance formulas to find the distance from the train station:

Distance from the train station = speed of the train × time = 50 × 5 = 250 miles

Final answer:

The car catches up with the train in 5 hours, and they are 350 miles from the station when the car catches up.

Explanation:

The problem you presented is related to finding when two objects, moving at different constant speeds, meet. To solve this, we use the concept of relative speed.

The train travels for 2 hours before the car starts, so by that time, the train would have covered a distance of (50 mi/hr × 2 hr) = 100 miles. When the car starts, it has to cover not only the distance to the train but also the additional distance the train covers as the car approaches.

Let's consider the time it takes for the car to catch up with the train to be 't' hours. In that time, the car would travel 70t miles, and the train would travel an additional 50t miles.

Since the car needs to cover the initial 100 miles plus whatever distance the train covers in 't' hours, we can set up the equation:

70t = 100 + 50t

Subtracting 50t from both sides gives us:

20t = 100

Dividing both sides by 20:

t = 5

So, the car catches up with the train in 5 hours. To find out how far from the station they are when the car catches up with the train:

x = 70 mi/hr × 5 hr = 350 miles

1 mole of air undergoes a Carnot cycle. The hot reservoir is at 800 oC and the cold reservoir is at 25 oC. The pressure ranges between 0.2 bar and 60 bar. Determine the net work produced, and the efficiency of the cycle.

Answers

Answer:

The net work produced is 30.37 KJ

The efficiency of cycle is 72.3%

Explanation:

For the net work produced, we have the formula:

Work = (Th - Tc)(Sh - Sc)(M)

Where,

Th = higher temperature = 800° C + 273 = 1073 k

Tc = lower temperature = 25° C + 273 = 298 k

Sh = specific entropy at higher temperature

Sc = specific entropy at lower temperature

M = molar mass of air

Using, ideal gas table to find entropy. The table is attached.

therefore,

Work = (1073 k - 298 k)(3.0485235 KJ/kg.k - 1.69528 KJ/kg.k)(0.02896 kg)

Work = (775 k)(1.3532435 KJ/kg.k)(0.02896 kg)

Work = 30.37 KJ

Now, for the efficiency (n), we have a formula:

n = 1 - Tc/Th

n = 1 - (298 k)/(1073 k)

n = 0.723 = 72.3 %

Automobile traveling at 65 mph constant on the road described below. Find rate at which radar must rotate when theta = 15 deg. Ans: theta_dot = 0.219 rad/s.

Answers

Answer:

The rate at which radar must rotate is 0.335 rad/s.

Explanation:

Given that,

Velocity = 65 m/h = 29.0576 m/s

Angle = 15°

Suppose, the radius given by

[tex]r=(100\cos2\theta)\ m[/tex]

We need to calculate the rate at which radar must rotate

Using formula of linear velocity

[tex]v=r\omega[/tex]

[tex]\omega=\dfrac{v}{r}[/tex]

Where, v = velocity

r = radius

Put the value into the formula

[tex]\omega=\dfrac{29.0576}{100\cos30}[/tex]

[tex]\omega=0.335\ rad/s[/tex]

Hence, The rate at which radar must rotate is 0.335 rad/s.

A protester carries his sign of protest, starting from the origin of an xyz coordinate system, with the xy plane horizontal. He moves 70 m in the negative direction of the x axis, then 19 m along a perpendicular path to his left, and then 21 m up a water tower. In unit-vector notation, what is the displacement of the sign from start to end

Answers

Answer:

[tex]-70\hat{i} m+19\hat{j}m+21\hat{k} m[/tex]

Explanation:

We are given that

Displacement along x- axis =-[tex]70\hat{i}[/tex] m

Displacement along y-axis=[tex]19\hat{j}[/tex]m

Displacement along z-axis=[tex]21\hat{k} m[/tex]

Where [tex]\hat{i},\hat{j},\hat{k}[/tex] are unit vector along x, y and z-axis

We have to find the displacement from start to end in unit vector notation.

Total displacement from start to end=Displacement along x-axis+displacement along y-axis+displacement along z- axis

Total displacement from start to end=[tex]-70\hat{i} m+19\hat{j}m+21\hat{k} m[/tex]

Hence, the displacement of the sign from start to end=[tex]-70\hat{i} m+19\hat{j}m+21\hat{k} m[/tex]

A gas has a pressure of 48atm in a 15.5L container. It was found that at 25∘C the gas occupied a volume of 25L and had a pressure of 22atm. What was the initial temperature in degrees Celsius?

Answers

Answer:

130.165636364°C

Explanation:

P = Pressure

V = Volume

n = Number of moles

R = Gas constant = 0.082 L atm/mol K

From ideal gas law we have

[tex]PV=nRT\\\Rightarrow n=\dfrac{PV}{RT}\\\Rightarrow n=\dfrac{22\times 25}{0.082\times (25+273.15)}\\\Rightarrow n=22.496451696\ moles[/tex]

[tex]PV=nRT\\\Rightarrow T=\dfrac{PV}{nR}\\\Rightarrow T=\dfrac{48\times 15.5}{22.496451696\times 0.082}\\\Rightarrow T=403.315636364\ K[/tex]

The initial temperature is [tex]403.315636364-273.15=130.165636364\ ^{\circ}C[/tex]

Answer: 130 degrees Celsius

Explanation:

P1V1 / T1 = P2V2 / T2

Let the subscript 1 represent the initial 15.5L of gas and the subscript 2 represent the gas at the final volume of 25L. Rewrite the temperature in Kelvin by adding 273.

P1=48atm, V1=15.5L, P2=22atm, V2=25L, T2=298K, and T1 is unknown.

Substitute the known values into the combined gas law equation.

P1V1 / T1=P2V2 / T2 → (48atm)(15.5L) / T1 = (22atm)(25L) / 298K

Solve the equation for T1, simplify, and round to the nearest degree.

T1 = P1V1T2 / P2V2

T1 = (48atm)(15.5L)(298K)(22atm)(25L)

T1 = 403K

To get the temperature in Celsius, subtract 273.

T1 = 130∘C

At a distance D from a very long (essentially infinite) uniform line of charge, the electric field strength is 1000 N/C. At what distance from the line will the field strength to be 2000 N/C

Answers

Final answer:

To find the distance from the line where the electric field strength is 2000 N/C, we can use the formula for the electric field of an infinitely long charged wire. The distance from the line where the electric field strength is 2000N/C is d = lambda / 2 x 10^6 m.

Explanation:

To find the distance from the line where the electric field strength is 2000 N/C, we can use the formula for the electric field of an infinitely long charged wire:

E = k * (lambda / d)

Where E is the electric field strength, k is the Coulomb's constant, lambda is the charge density of the wire, and d is the distance from the wire. In this case, since the line of charge is infinite, the charge density is simply the charge per unit length.

To solve for the distance d, we can rearrange the formula: d = k * (lambda / E)

Plugging in the given values, the distance d is:

d = (9.0 x 10^9 Nm^2/C^2) * (lambda / 2000 N/C)

So, the distance from the line where the electric field strength is 2000 N/C is d = lambda / 2 x 10^6 m.

Learn more about Electric Field here:

https://brainly.com/question/8971780

#SPJ12

A man wandering in the desert walks 2.7 miles in the direction S 35°W. He then turns 90° and walks 3.5 miles in the direction N 55° W. At that time, how far is he from his starting point, and what is his bearing from his starting point?

Answers

To solve this problem we will make a diagram in the Cartesian plane that will allow us to find and understand more accurately the displacement and the angle of rotation.

According to Pythagoras, the distance traveled would be equivalent to

[tex]d = \sqrt{(2.7)^2+(3.5)^2}[/tex]

[tex]d = 4.4 miles[/tex]

The individual had a displacement of 4.4 thousand from the starting point.

Now the angle [tex]\theta[/tex] plus the previously given angle will allow us to find the direction of travel.

[tex]tan\theta = \frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

[tex]tan\theta = \frac{3.5}{2.7}[/tex]

[tex]\theta = tan^{-1} (\frac{3.5}{2.7})[/tex]

[tex]\theta = 52.35\°[/tex]

[tex]\angle =[/tex] [tex]\theta + 35 = 52.35+35 = 87.35\°[/tex]

Therefore the net direction of the man is S 87.35° W

a projectile is fired in the earths gravitational field with a horizontal velocity in v = 9.00m/s. how far does it go in the horizontal direction in .550 s?

Answers

Answer:

Distance traveled by projectile in horizontal direction will be 4.95 m  

Explanation:

We have given horizontal velocity of the projectile v = 9 m/sec

We have to find the distance traveled by projectile in 0.550 sec in horizontal direction.

We know that distance is equal to multiplication of speed and time

So distance traveled in horizontal direction will be equal to [tex]d=v\times t=9\times 0.550=4.95m[/tex]

So distance traveled by projectile in horizontal direction will be 4.95 m  

Answer:

4.95 m

Explanation:

Horizontal velocity of projectile, u = 9 m/s

time, t = 0.550 s

The horizontal distance, d = horizontal velocity x time

d = 9 x 0.55

d = 4.95 m

Thus, the horizontal distance traveled is 4.95 m.

A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 1.90 s. You may ignore air resistance, so the brick is in free fall. (a) How tall, in meters, is the building? (b) What is the magnitude of the brick’s velocity just before it reaches the ground? (c) Sketch ay-t, vy-t, and y-t graphs for the motion of the brick.

Answers

Answer: Height of building = 17.69m, velocity of brick = 18.6m/s

Explanation: From the question, the body has a zero initial speed, thus initial velocity (u) all through the motion is zero.

By ignoring air resistance makes it a free fall motion thus making it to accelerate constantly with a value of [tex]a = 9.8m/s^{2}[/tex].

Time taken to fall = 1.90s

a)

thus the height of the building is calculated using the formulae below

[tex]H = ut + \frac{1}{2} gt^{2}[/tex]

but u = 0 , hence

[tex]H = \frac{1}{2} gt^{2}[/tex]

[tex]H = \frac{1}{2} *9.8* 1.9^{2} \\\\H = 17.69m[/tex]

b)

to get the value of velocity (v) as the brick hits the ground, we use the formulae below

[tex]v^{2} = u^{2} + 2aH[/tex]

but u= 0, hence

[tex]v^{2} = 2gH\\[/tex]

[tex]v^{2} = 2 * 9.8 * 17.69\\v = \sqrt{2 *9.8* 17.69} \\v = 18.62m/s[/tex]

 

find the attachment in this answer for the accleration- time graph, velocity- time graph and distance time graph

a. The height of building, in meters, is equal to 17.69 meters.

b. The magnitude of the brick’s velocity just before it reaches the ground is equal to 18.72 m/s.

Given the following data:

Time = 1.90 secondsInitial velocity = 0 m/s

We know that acceleration due to gravity (a) for an object in free fall is equal to 9.8 meter per seconds square.

a. To determine the height of building, in meters, we would use the second equation of motion:

Mathematically, the second equation of motion is given by the formula;

[tex]S = ut + \frac{1}{2} at^2[/tex]

Where:

S is the distance covered.u is the initial velocity.a is the acceleration.t is the time measured in seconds.

Substituting the given parameters into the formula, we have;

[tex]S = 0(1.90) + \frac{1}{2} \times 9.8 \times 1.90^2\\\\S = 0 + 4.9 \times 3.61[/tex]

Distance, S = 17.69 meters.

b. To determine the magnitude of the brick’s velocity just before it reaches the ground, we would use the third equation of motion;

[tex]V^2 = U^2 + 2aS[/tex]

Where:

V is the final speed.U is the initial speed.a is the acceleration.S is the distance covered.

Substituting the given parameters into the formula, we have;

[tex]V^2 = 0^2 + 2 \times 9.8 \times 17.69\\\\V^2 = 350.26\\\\V = \sqrt{350.26}[/tex]

V = 18.72 m/s

Read more: https://brainly.com/question/8898885

An airplane in a holding pattern flies at constant altitude along a circular path of radius 3.50 km. If the airplane rounds half the circle in 1.50 3 102 s, determine the magnitude of its (a) displacement and (b) average velocity during that time. (c) What is the airplane’s average speed during the same time interval?

Answers

Explanation:

A.

Displacement,S; Θ = S/r

= 180/360 * 2π * 3500

= 10995.6 m

Θ = 10995.6/3500

= 3.142

B.

Angular speed,w = Θ/t

= 3.142/1.503102

= 2.09 rad/s

Velocity = w * r

= 2.09 × 3500

= 7315 m/s.

C.

The same as B.

The airplane's Motion in a Circle displacement is 7.0km, its average velocity is 0.0467 km/s, and its average speed is 0.0737 km/s.

The airplane is flying half a circle, which is essentially semi-circular motion. Under this condition, we can calculate the values asked in the question as follows:

(a) Displacement: Displacement is a vector quantity and represents the shortest distance between the initial and the final points of an object's path. But since the airplane is rounding half the circle, the displacement is essentially the diameter of the circular path. The diameter will be two times the radius, therefore 2*3.50km = 7.00 km.

(b) Average velocity: Average velocity is the total displacement divided by the total time. So, the average velocity would be 7.00km / (1.50*10^2) s = 0.0467 km/s.

(c) Average speed: Average speed is defined as the total distance traveled by the object divided by the total time taken. Here, the airplane travels half the circumference of the circle in the given time. The formula for the circumference of a circle is 2*pi*r, so half the circle's circumference will be pi*3.50 km. Then, Average speed = (pi*3.50 km) / (1.50*10^2) s = 0.0737 km/s.

For more such questions on Motion in a Circle, click on:

https://brainly.com/question/36406168

#SPJ3

A single-turn rectangular wire loop measures 6.00 cm wide by 10.0 cm long. The loop carries a current of 3.00 A. The loop is in a uniform magnetic field with B = 4.00 times 10^-3 T. Taking torques about an axis, parallel to either side of the rectangular loop, that maximizes the torque, what is the magnitude of the torque exerted by the field on the loop if the direction of the magnetic field is described as the following? a) parallel to the short sides of the loop N middot m b) parallel to the long sides of the loop N middot m c) perpendicular to the plane of the loop N middot m

Answers

Answer:

Explanation:

Single turn implies that N=1

The rectangle is 6cm (0.06m) wide and 10 cm (0.1m) long.

Current in loop is 3A

Magnetic Field B= 4×10^-3T

To take the maximum torque then, sinθ=1

Then

τ=NiABsinθ

Where N is number of turns, and in this case N is 1

i is current in coil and it this case it is 3Amps.

A is area of of coil

And in this case it is a rectangle

Area of rectangle is Lenght × breadth

A= 0.06×0.1= 0.006m^2

And B is magnetic field given as B=4×10^-3T

And θ is angle between the field and the normal to the coil.

a. Torque parallel to the short side of the loop,

The length of the short side is 6cm=0.06m.

This is actually the maximum possible torque, when the field is in the plane of the loop.

τ=NiABsinθ

τ=1×3×0.006×4×10^-3

τ=0.072 ×10^-3

τ=7.2 ×10^-5Nm

b. Torque parallel to the long side of the loop,

The length of the short side is 10cm=0.1m.

This is actually the maximum possible torque, when the field is in the plane of the loop.

τ=NiABsinθ

τ=3×0.006×4×10^-3

τ=0.072 ×10^-3

τ=7.2 ×10^-5Nm.

c. Torque perpendicular to the plane. When the field is perpendicular to the loop the torque is zero.

If the torque is perpendicular to the plane, we said theta is the angle between the normal and the magnetic field

Then if the torque is perpendicular to the normal, then the angle between the torque and the normal is 0, the sinθ = 0

τ=NiABsinθ

Since sinθ =0

Then,

τ=0Nm

A 200-m-wide river has a uniform flow speed of 0.99 m/s through a jungle and toward the east. An explorer wishes to leave a small clearing on the south bank and cross the river in a powerboat that moves at a constant speed of 4.4 m/s with respect to the water. There is a clearing on the north bank 35 m upstream from a point directly opposite the clearing on the south bank.

a. At what angle, measured relative to the direction of flow of the river, must the boat be pointed in order to travel in a straight line and land in the clearing on the north bank?
b. How long will the boat take to cross the river and land in the clearing?

Answers

Answer:

a. 1.174 rad[/tex] or 67.3 degree

b. t = 49.28 s

Explanation:

Let [tex]v_v[/tex] be the vertical component of the boat velocity with respect the the river, pointing North. Let [tex]v_h[/tex] be the horizontal component of the boat velocity with respect to the river, pointing West, aka upstream. Since the total velocity of the boat is 4.4m/s

[tex]v_v^2 + v_h^2 = 4.4^2 = 19.36[/tex]

The time it takes for the boat to cross 200m-wide river at [tex]v_v[/tex] rate is

[tex]t = 200 / v_v[/tex] or [tex]v_v = 200 / t[/tex]

This is also the time it takes for the boat to travel 35m upstream, horizontally, at the rate of [tex] v_h - 0.99[/tex] m/s

[tex]t = \frac{35}{v_h - 0.99}[/tex]

[tex]v_h - 0.99 = 35/t[/tex]

[tex]v_h = 35/t + 0.99[/tex]

We can substitute [tex]v_v,v_h[/tex] into the total velocity equation to solve for t

[tex]\frac{200^2}{t^2} + (\frac{35}{t} + 0.99)^2 = 19.36[/tex]

[tex]\frac{40000}{t^2} + \frac{35^2}{t^2} + 2*0.99*\frac{35}{t} + 0.99^2 = 19.36[/tex]

From here we can multiply both sides by [tex]t^2[/tex]

[tex]40000 + 1225 + 69.3t + 0.9801t^2 = 19.36t^2[/tex]

[tex]18.38 t^2 - 69.3t - 41225 = 0[/tex]

[tex]t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]t= \frac{69.3\pm \sqrt{(-69.3)^2 - 4*(18.3799)*(-41225)}}{2*(18.38)}[/tex]

[tex]t= \frac{69.3\pm1742.31}{36.7598}[/tex]

t = 49.28 or t = -45.51

Since t can only be positive we will pick t = 49.28

[tex]v_h = 35 / t + 0.99 = 35 / 49.38 + 0.99 = 1.7 m/s[/tex]

The angle, relative to the flow of river direction is

[tex]cos(\alpha) = \frac{v_h}{v} = \frac{1.7}{4.4} = 0.3864[/tex]

[tex]\alpha = cos^{-1}(0.3864) = 1.174 rad[/tex] or 67.3 degree

A hydraulic turbine is used to generate power by using the water in a dam. The elevation difference between the free surfaces upstream and downstream of the dam is 131 m. The water is supplied to the turbine at a rate of 201 kg/s. If the shaft power output from the turbine is 234 kW, the efficiency of the turbine is_________.

Answers

Answer:

0.906

Explanation:

Let g = 9.81 m/s2. We can calculate the rate of change in potential energy when m = 201kg of water is falling down a distance of h = 131m per second

[tex]\dot{E_p} = \dot{m}gh = 201*9.81*131 = 258307 J/s (W) = 258.307 kW[/tex]

So the efficiency of the water turbine is the ratio of output power over input power:

[tex]\frac{234}{258.307} = 0.906[/tex]

This question involves the concepts of efficiency and potential energy.

The efficiency of the turbine is "90.6%".

The efficiency of the turbine can be given by the following formula:

[tex]Efficiency = \frac{Turbine\ shaft\ power}{Potential\ Energy\ power\ of\ Water}\\\\[/tex]

where,

Turbine shaft power = 234 KW

Potential energy power of water = mgh/t = (201 kg/s)(9.81 m/s²)(131 m)

Potential energy power of water = 258307.11 W = 258.31 KW

Therefore,

[tex]Efficiency=\frac{234\ KW}{258.31\ KW}[/tex]

Efficiency = 0.906 = 90.6%

Learn more about efficiency here:

https://brainly.com/question/5035443?referrer=searchResults

A cannon ball is shot straight upward with a velocity of 72.50 m/s. How high is the cannon ball above the ground 3.30 seconds after it is fired? (Neglect air resistance.)

Answers

Answer:

Explanation:

Given

Cannon is fired with a velocity of [tex]u=72.50\ m/s[/tex]

Using Equation of motion

[tex]y=ut+\frac{1}{2}at^2[/tex]

where

[tex]y=displacement[/tex]

[tex]u=initial\ velocity[/tex]

[tex]a=acceleration[/tex]

[tex]t=time[/tex]

after time [tex]t=3.3 s[/tex]

[tex]y=72.50\times 3.3-\frac{1}{2}\times 9.8\times (3.3)^2[/tex]

[tex]y=239.25-53.36[/tex]

[tex]y=185.89\ m[/tex]

So after 3.3 s cannon ball is at a height of 185.89 m

A harmonic wave on a string with a mass per unit length of 0.050 kg/m and a tension of 60 N has an amplitude of 5.0 cm. Each section of the string moves with simple harmonic motion at a frequency of 8 Hz. Find the power propagated along the string.

Answers

Answer:

Power of the string wave will be equal to 5.464 watt

Explanation:

We have given mass per unit length is 0.050 kg/m

Tension in the string T = 60 N

Amplitude of the wave A = 5 cm = 0.05 m

Frequency f = 8 Hz

So angular frequency [tex]\omega =2\pi f=2\times 3.14\times 8=50.24rad/sec[/tex]

Velocity of the string wave is equal to [tex]v=\sqrt{\frac{T}{\mu }}=\sqrt{\frac{60}{0.050}}=34.641m/sec[/tex]

Power of wave propagation is equal to [tex]P=\frac{1}{2}\mu \omega ^2vA^2=\frac{1}{2}\times 0.050\times 50.24^2\times 34.641\times 0.05^2=5.464watt[/tex]

So power of the wave will be equal to 5.464 watt

A ball is thrown straight up from the ground with speed v0. At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of H in terms of v0 and g such that at the instant when the balls collide, the first ball is at the highest point of its motion.

Answers

Answer:

(a) [tex]t=\frac{H}{v_0}[/tex]

(b) [tex]H=\frac{v_0^2}{g}[/tex]

Explanation:

Let the two balls collide at a height x from the ground. Therefore, ball 2 travels a distance of (H-x) before colliding with ball 1.

Using the following Newton's law of motion,

[tex]S=ut+\frac{1}{2}at^2[/tex]

where,

[tex]S[/tex] = displacement

[tex]u[/tex] = initial velocity

[tex]a[/tex] = acceleration

[tex]t[/tex] = time

we can write the equations of motion of the two balls(ball 1 and ball 2 respectively):

[tex]x=v_0t-\frac{1}{2}gt^2[/tex]     ......(1)   ([tex]a=-g[/tex], ball is moving against gravity)

[tex]H-x=\frac{1}{2} gt^2[/tex]      .......(2)    (initial velocity is zero; [tex]a=+g[/tex])

Substituting [tex]x[/tex] from equation (1) in (2),

[tex]H-v_0t+\frac{1}{2}gt^2=\frac{1}{2}gt^2[/tex]

or, [tex]t=\frac{H}{v_0}[/tex]      ......(a)

(b) Now, it is said that the collision will occur when ball 1 is at it's highest point. That is, it's final velocity must be zero.

This time we shall have to use another equation of motion given by,

[tex]v^2=u^2+2aS[/tex]

where, [tex]v[/tex] = final velocity

therefore, we get for ball 1,

[tex]0=v_0^2-2gx[/tex]       ([tex]u=v_0,v=0,a=-g[/tex])

or, [tex]x=\frac{v_0^2}{2g}[/tex]

Putting the value of [tex]x[/tex] in equation (2) and rearranging, we get,

[tex]\frac{g}{2v_0^2}H^2-H+\frac{v_0^2}{2g}=0[/tex]

which is a quadratic equation, whose solution is given by,

[tex]H=\frac{+1\pm\sqrt{(-1)^2-(4\times\frac{g}{2v_0^2} \times\frac{v_0^2}{2g}) } }{2\times\frac{g}{2v_0^2} }[/tex]

[tex]=\frac{v_0^2}{g}[/tex]

(a) The time at which the balls collide is H/[tex]v_{0}[/tex]

(b) The height H is equal to [tex]\frac{v_{0} ^{2} }{g}[/tex]

Let the balls collide at a height x above the ground.

Then the distance traveled by the ball thrown above is x.

And the distance traveled by the ball dropped from height H is (H-x).

(i) Both the balls will take the same time to travel respective distances in order to collide.

[tex]H-x=\frac{1}{2}gt^{2}[/tex]

[tex]x = v_{0}t - \frac{1}{2}gt^{2}[/tex]

We get:

[tex]x=v_{0}t-(H-x)[/tex]

[tex]t=\frac{H}{v_{0}}[/tex] , is the time after which the balls collide.

(ii) Let the ball thrown up attains its maximum height x at the time of thecollision

[tex]v^{2} = u^{2}-2gx[/tex] here v is the final velocity which is 0 when the ball attains maximum height

[tex]0=v_{0} ^{2}-2gx[/tex]

[tex]x=\frac{v_{0} ^{2} }{2g}[/tex] is the maximum height attained.

Now, the ball thrown downward travels distance (H-x) just before collision:

[tex]H-x=\frac{1}{2}gt^{2}[/tex]

[tex]H-\frac{v_{0} ^{2} }{2g}=\frac{1}{2}g\frac{H^{2} }{v_{0} ^{2} }[/tex]

Solving the quadratic equation we get:

[tex]H=\frac{v_{0} ^{2} }{g}[/tex]

Learn more about equations of motion:

https://brainly.com/question/20594939

Which of the following does not involve work? 1. A child is pushed on a swing. 2. A golf ball is struck. 3. A weight lifter does military presses (lifting weights over his head.) 4. A professor picks up a piece of chalk from the floor. 5. A runner stretches by pushing against a wall.

Answers

From the work theorem, this is defined as the amount of force applied on an object displaced on a longitudinal unit. Mathematically this is

[tex]W = \vec{F} \times \vec{d}[/tex]

Here,

F = Force vector

d = Displacement vector

Of all the options presented, only in the last one there is no change in distance, so the work done there is zero.

The correct option is 5.

Final answer:

Work in Physics is when a force causes displacement. Of the choices, the example of a runner stretching by pushing against a wall does not involve work, as there is no displacement.

Explanation:

In the context of Physics, 'work' is defined as a force causing displacement on an object. Essentially, work is done when a force acts upon an object to cause or prevent motion. Among the options provided, 5. A runner stretches by pushing against a wall does not involve 'work'. This is because, despite the runner exerting a force against the wall, there is no displacement of the wall in response to this force.

Work (W) is calculated by multiplying the force (F) that is applied to an object and the distance (d) that the object is moved, i.e., W = F * d. In this case, since the displacement (d) is zero, the work done is also zero.

Learn more about Work in Physics here:

https://brainly.com/question/34765290

#SPJ11

A nonconducting sphere has radius R = 2.36 cm and uniformly distributed charge q = +2.50 fC. Take the electric potential at the sphere's center to be V0 = 0. What is V at radial distance r = 1.45 cm?

Answers

Explanation:

It is known that inside a sphere with uniform volume charge density the field will be radial and has a magnitude E that can be expressed as follows.

           E = [tex]\frac{q}{4 \p \epsilon_{o}R^{3}}r[/tex]

    V = [tex]-\int_{0}^{r}E. dr[/tex]

        = [tex]-\int_{0}^{r}\frac{q}{4 \p \epsilon_{o}R^{3}}r dr[/tex]

        = [tex](\frac{q}{4 \p \epsilon_{o}R^{3}})(\frac{r^{2}}{2})[/tex]

        = [tex]\frac{-qr^{2}}{8 \pi \epsilon_{o}R^{3}}[/tex]

At r = 1.45 cm = [tex]1.45 \times 10^{-2}[/tex]  (as 1 m = 100 cm)

     V = [tex]\frac{2.50 \times 10^{-15} \times 1.45 \times 10^{-2}}{8 \times 3.1416 \times 8.85 \times 10^{-12} \times 2.36 \times 10^{-2}}[/tex]

         = [tex]6.905 \times 10^{-6}[/tex] mV

Thus, we can conclude that value of V at radial distance r = 1.45 cm is  [tex]6.905 \times 10^{-6}[/tex] mV.

To practice Problem-Solving Strategy 2.1 Motion with constant acceleration You are driving down the highway late one night at 20 m/s when a deer steps onto the road 35 m in front of you. Your reaction time before stepping on the brakes is 0.50 s , and the maximum deceleration of your car is 10 m/s2 . How much distance is between you and the deer when you come to a stop

a. How much distance is between you and the deer when you come to a stop?
b. What is the maximum speed you could have and still not hit the deer?

Answers

Answer:

a) [tex]\Delta s=5\ m[/tex] is the distance between deer and the vehicle

b) [tex]u'=22.36\ m.s^{-1}[/tex] is the maximum speed the driver can be at and still not hit the deer.

Explanation:

Given:

initial speed of driving, [tex]u=20\ m.s^{-1}[/tex]distance of deer from the vehicle, [tex]x=35\ m[/tex]reaction time taken to step onto the brakes, [tex]t'=0.5\ s[/tex]maximum deceleration of the car, [tex]a_m=-10\ m.s^{-2}[/tex]

a)

Now the distance travelled after application of the brakes till the vehicle stops:

[tex]v^2=u^2+2a_m.s[/tex]

(assuming that the brakes are applied with maximum acceleration)

where:

[tex]s=[/tex] displacement of the vehicle after braking till it stops

[tex]v=[/tex] final velocity of the vehicle = 0 (stops)

putting the values:

[tex]0^2=20^2-2\times 10\times s[/tex]

[tex]s=20\ m[/tex]

Now before the application of the brakes 0.5 second is taken to react and the vehicle travels during this time as well.

So, distance covered before applying the brakes:

[tex]s'=u.t'[/tex]

[tex]s'=20\times 0.5[/tex]

[tex]s'=10\ m[/tex]

The distance between the deer and the vehicle:

[tex]\Delta s=x-(s+s')[/tex]

[tex]\Delta s=35-(20+10)[/tex]

[tex]\Delta s=5\ m[/tex]

b)

The maximum speed the driver can have with the vehicle and still not hit the deer is given as:

[tex]v^2=u'^2+2. a_m.(x-s')[/tex]

because s' is the distance covered before braking during the reaction time.

[tex]0^2=u'^2-2\times 10\times (35-10)[/tex]

[tex]u'=22.36\ m.s^{-1}[/tex] is the maximum speed the driver can be at and still not hit the deer.

Final answer:

Using the equations of motion under constant acceleration, a) the distance between the driver and the deer when the car comes to a stop is 5 m and b) the maximum speed the driver could have and still not hit the deer is approximately 23.45 m/s.

Explanation:

The subject of the question, Problem-Solving Strategy 2.1 Motion with constant acceleration, involves using the equations of motion under constant acceleration. Let's break down the problem into two parts:

How much distance is between you and the deer when you come to a stop? In this scenario, you first drive at 20 m/s for 0.50 s before stepping on the brakes. So, the distance travelled during this time is v*t = 20 m/s * 0.50 s = 10 m. Then, you decelerate at 10 m/s². As you finally come to stop, the additional distance travelled can be found by the formula (v² - u²) / 2a, which gives (0 - (20²)) / 2*(-10) = 20 m. So, the total distance covered is 10 m + 20 m = 30 m. Therefore, you come to a stop 5 m away from the deer because the deer was initially 35 m away.What is the maximum speed you could have and still not hit the deer? For this, you need to calculate the stopping distance for the car in relation to the deer at 35 m and find the initial speed where the stopping distance equals the distance to the deer. If the car travels distance D in the driver's reaction time, then it travels (35 - D) while braking. The braking distance = (v² - u²) / 2a => v² = 2aD, where D = (35 - v*0.50). Solving for v in the quadratic equation gives the maximum speed, approx 23.45 m/s to not hit the deer.

Learn more about Motion with Constant Acceleration here:

https://brainly.com/question/25307462

#SPJ3

An Atwood machine is constructed using a disk of mass 2 kg and radius 24.8 cm. What is the acceleration of the system? The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s 2 .

Answers

Answer:

a = (m₂-m₁) / (m₂ + m₁ + ½ m)

a = (m₂-m₁) / (m₂ + m₁ + 1)

Explanation:

An Atwood machine consists of two masses of different m1 and m2 value that pass through a pulley, in this case with mass. Let's use Newton's second law for this problem.

Assume that m₂> m₁, so the direction of descent of m₂ is positive, this implies that the direction of ascent of m₁ is positive

Equation of the side of m₁

              T₁ - W₁ = m₁ a

Equation of the side of m₂

              W₂ - T₁ = m₂ a

Mass pulley equation m; by convention the counterclockwise rotation is positive

              τ = I α

              T₁ R - T₂ R = I (-α)

The moment of inertia of a disk is

              I = ½ m R²

Angular and linear acceleration are related

             a = α R

             α = a / R

The rotation is clockwise, so it is negative

We replace

             (T₁ –T₂) R = ½ m R² (-a / R)

             T₁ -T₂ = - ½ m a

Let's write our three equations together

              T₁ - m₁ g = m₁ a

              m₂ g - T₂ = m₂ a

              T₁ –T₂ = -½ m a

Let's multiply the last equation by (-1) and add

               m₂ g - m₁ g = m₂ a + m₁ a + ½ m a

                a = (m₂-m₁) / (m₂ + m₁ + ½ m)

calculate

               a = (m₂ - m₁)/ (m₁ +m₂ + 1)

Based on the calculations, the acceleration of this system is equal to 0.58 [tex]m/s^2[/tex].

Given the following data:

Mass of disk = 2 kg.Radius of disk = 24.8 cm.Acceleration of gravity = 9.8 [tex]m/s^2[/tex]

How to calculate the acceleration of the system.

First of all, we would determine the moment of inertia of this disk by using this formula:

[tex]I=\frac{1}{2} mr^2\\\\I=\frac{1}{2} \times 2 \times (0.248)^2\\\\I=0.0615\;Kgm^2[/tex]

Next, we would use a free body diagram to determine the tensional forces acting on the disk by applying Newton's Second Law of Motion as follows:

For the first force:

[tex]F_1g-F_{T1}=m_1a\\\\m_1g-F_{T1}=m_1a\\\\1.61(9.8)-F_{T1}=1.61a\\\\15.8-F_{T1}=1.61a\\\\F_{T1}=15.8-1.61a[/tex]

For the second force:

[tex]F_{T2}-F_2g=m_2a\\\\F_{T2}-m_2g=m_2a\\\\F_{T2}-1.38(9.8)=1.38a\\\\F_{T2}-13.5=1.38a\\\\F_{T2}=13.5+1.38a[/tex]

For the torque, we have:

[tex]\sum T =I\alpha \\\\F_{T1}r-F_{T2}r=I\alpha\\\\(F_{T1}-F_{T2})r=I\alpha\\\\(15.8-1.61a-[13.5+1.38a])0.248=0.0615 \times \frac{a}{0.248} \\\\(15.8-1.61a-13.5-1.38a)0.248=0.0615 \times \frac{a}{0.248} \\\\(2.3-2.99a)0.248=0.0615 \times \frac{a}{0.248}\\\\0.5704-0.7415a=\frac{0.0615a}{0.248}\\\\0.1415-0.1839a=0.0615a\\\\0.1839a+0.0615a=0.1415\\\\0.2454a=0.1415\\\\a=\frac{0.1415}{0.2454}[/tex]

Acceleration, a = 0.58 [tex]m/s^2[/tex]

Read more on acceleration here: brainly.com/question/24728358

What are the three longest wavelengths for standing sound waves in a 120-cm-long tube that is (a) open at both ends and (b) open at one end, closed at the other?

Answers

Answer

given,

length of tube = 120 cm

a) Open at both ends.

distance between two successive nodes or anti nodes = λ/2

for first possibility =  λ/2 = 120

                          λ  =2 x 120 = 240 cm

for second Possibility, distance between two node or antinode acting symmetrically

                       λ = 120 cm

for three nodes in the tube, distance between them is equal to

[tex]\dfrac{3}{2}\lambda = 120[/tex]

[tex]\lambda = 80 cm[/tex]

b) Open at one end

 First possibility, The distance between one node or anti node

  [tex]\dfrac{\lambda}{4} = 120[/tex]

             λ = 480 cm

 Second Possibility, distance between two node or anti node is equal to

[tex]\dfrac{3}{4}\lambda = 120[/tex]

    λ = 160 cm

Third possibility, distance between three nodes and three anti nodes is equal to

[tex]\dfrac{5}{4}\lambda = 120[/tex]

   λ = 100 cm

You are on your balcony and notice some bad squirrels digging in your garden directly below. You start tossing your pistachios at them to get them out of your yard. If the height of your guard rail is 43 inches above the deck, which is at a standard height of 10 feet above the ground, and you toss the pistachios straight down with a speed of 7.4 m/s, then how long does it take for the pistachio to reach the ground?

Answers

Answer:

0.43 s

Explanation:

We have the following parameters:

Initial velocity, u = 7.4 m/s

Acceleration of gravity, g = 9.8 [tex]m/s^2[/tex]

Distance, s = 43 in + 10 ft = 1.092 m + 3.048 m = 4.14 m

Time, t = ?

Using the equation of motion [tex]s=ut +\frac{1}{2}gt^2[/tex], we have

[tex]4.14 = 7.4t + 0.5\times9.8t^2[/tex]

[tex]4.9t^2 + 7.4t - 4.14 =0[/tex]

Using the quadratic formula [tex]\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex] where a = 4.9, b = 7.4 and c = - 4.14, and solving for the positive value of t only, we have

[tex]t = 0.43[/tex] s

In the infinitesimal neighborhood surrounding a point in an inviscid flow, the small change in pressure, dP, that corresponds to a small change in velocity, dV, is given by the differential relation: dP=−rhoVdV. (a) Using this relation, derive a differential relation for the fractional change in density, drho/rho, as a function of the fractional change in velocity, dV/V, with the compressibility τ as a coefficient. (b) The velocity at a point in an isentropic flow of air is 10 m/s, and the density and pressure are 1.23 kg/m3 and 1.01 x 105 N/m2, respectively. The fractional change in velocity at the point is 0.01. Calculate the fractional change in density. (c) Repeat part (b), except for a local velocity at the point of 1000 m/s. Compare this result with that from part (b), and comment on the differences.

Answers

Answer:

(a). differential relation becomes dρ/ρ = -τρV2 dV/V

(b). fraction change in density; dρ/ρ = -8.7 ˣ 10⁻⁶

(c).  dρ/ρ = -8.7 ˣ 10⁻²

Explanation:

Let us begin,

(a).  given from the question we have that dp = -ρVdV

where dρ = ρ τ dp, i.e.

dp = dρ/ρτ ...............(1)

replacing value of dp we have,

-ρVdV = dρ/ρτ

so that dρ = -τp2 VdV

finally, dρ/ρ = -τp V2 dV/V

(b). from the question here, we were given Velocity to be = 10 m/s

density (ρ) =  1.23 kg/m3

pressure (p) =  1.01 x 10⁵ N/m2

from formula,

dρ/ρ = τs ρ V2 dV/V .............(2)

but τs = 1/γp = 1/(1.4× 1.01×10⁵) = 7.07 ˣ 10⁻⁶ m²/N

substituting value of τs  into equation (2) we have

dρ/ρ = τs ρ V2 dV/V =  (7.07 ˣ 10⁻⁶) ˣ (1.23) ˣ (10ˣ2) (0.01) = -8.7 ˣ 10⁻⁶

dρ/ρ = -8.7 ˣ 10⁻⁶

(c). from we question we know that dρ/ρ has a large ratio of (1000/10)²

so dρ/ρ = -8.7 ˣ 10⁻⁶ × (1000/10)² = -8.7 ˣ 10⁻²

dρ/ρ = -8.7 ˣ 10⁻².

comparing this result with part (b). we can see that when we increase the velocity of a factor 100, there is an increased factorial change in the density by a factor 104.

A tuner first tunes the A string very precisely by matching it to a 440 Hz tuning fork. She then strikes the A and E strings simultaneously and listens for beats between the harmonics. What beat frequency between higher harmonics indicates that the E string is properly tuned

Answers

Answer:

The beat frequency is 2 Hz.

Explanation:

Given that,

Frequency of A = 440 Hz

Frequency of E = 659 Hz

Suppose, piano tuners tune pianos by listening to the beats between the harmonics of two different strings. When properly tuned, the note A should have a frequency of 440 Hz and the note E should be at 659 Hz.

We need to calculate the third harmonic of A

Using formula of harmonic

[tex]f_{3}=n\times f[/tex]

Put the value into the formula

[tex]f_{3} =3\times440[/tex]

[tex]f_{3}=1320\ Hz[/tex]

We need to calculate the second harmonic of E

Using formula of harmonic

[tex]f_{2}=n\times f[/tex]

Put the value into the formula

[tex]f_{2} =2\times659[/tex]

[tex]f_{2}=1318\ Hz[/tex]

We need to calculate the beat frequency

Using formula of beat frequency

[tex]f_{b}=f_{3}-f_{2}[/tex]

Put the value into the formula

[tex]f_{b}=1320-1318[/tex]

[tex]f_{b}=2\ Hz[/tex]

Hence, The beat frequency is 2 Hz.

Final answer:

The beat frequency indicating proper tuning of the E string relative to the A string tuned to 440 Hz should be zero. This corresponds to a situation where the harmonics of both strings match exactly, with the second harmonic of the E string (659.26 Hz) aligning with the third harmonic of the A string (660 Hz), reducing the beat frequency to zero.

Explanation:

To determine the beat frequency that indicates proper tuning for the E string of a guitar, we must consider the fundamental frequencies of the A and E strings. The A string is tuned to 440 Hz. The E string above it should be tuned to a fundamental frequency of 329.63 Hz.

When the A and E strings are played together, harmonics of these frequencies are heard. The second harmonic of the E string would be 2 * 329.63 Hz = 659.26 Hz. This is very close to the 660 Hz, which is the third harmonic of the A string (3 * 440 Hz = 1320 Hz). For the strings to resonate without beats, the harmonics should match as closely as possible. Any difference in these harmonic frequencies would cause beats corresponding to the frequency difference.

Therefore, if the second harmonic of the E string (659.26 Hz) matches the third harmonic of the A string (660 Hz) closely, there will be no beats. In this ideal case, the beat frequency would be 660 Hz - 659.26 Hz = 0.74 Hz. However, for the E string to be perfectly in tune, we would want the beat frequency to be zero, indicating no difference between the expected harmonic frequency and the actual harmonic frequency.

Other Questions
Y = 3x + 2-4x + 2y = 8 ireally need helpMost substances _______ in temperature and _______ when heat is added to them. A. decrease; contract B. increase; expand C. increase; contract D. decrease; expand factors of 48 that add to equal 26 Consider the two different numbers 327b (327 is base b) and 327b 1 (327 in base b 1), where b is a positive integer 8 or greater. If the difference between these two numbers is 89, what is the value of b Jorge Ortega has been using a 10 percent capacity cushion, servicing 60 customers an hour. There is a good deal of customercontact, and customer service has been poor due to random fluctuations in demand. If he increases his capacity cushion to20%, what will be the new capacity requirement?A. 60B. 75C. 80D. 67 Eileen is about to start a research study, and has chosen to use an experimental method. Of the choices listed below, which step should come first? A. Assign participants randomly to an experimental or control group B. Give the experimental group some type of experience that might change their behavior C. Observe the possible effects of the experimental condition D. Publish the results. Today is 4 jan and day is monday.what day will be on 23 jan. With step by step solve the proportional equation 3/r = 5/r+3 Conjugate acid/base problems: a. What are the conjugate bases of the molecules: i. C6H5OH? ii. CH3-SH iii. CH3-CH2-CO2H b. What are the conjugate acids of the molecules: i. CH3(CH2)-CO2- ii. CH3(CH2)-NH2 iii. Ring at right Researchers tested a meteorite for organic molecules containing 13C and 15N, which are carbon and nitrogen atoms with one extra neutron. However, a skeptic questions whether these "heavy" carbon and nitrogen isotopes would readily bond to make organic molecules such as amino acids and nitrogenous bases. Would extra neutrons affect the bonding of heavy carbon and nitrogen atoms?1.Yes, extra neutrons would make carbon and nitrogen more likely to bond.2.No, because only electrons are involved in bonding.3.No, because the number of protons remains the same.4.Yes. Atoms with extra neutrons must also have extra electrons, which would affect bonding. Which is one of the biggest contributors to stress? 5 Mi familia Listen to the following description. Then read the statements in your lab manual and decide whether they are cierto or falso. Hola! Me llamo Francisco Acosta y soy puertorriqueo. Tengo veinte aos y asisto a la Universidad de Nueva York donde estudio economa. Mi familia vive en San Juan, la capital de Puerto Rico. Mi padre, Carlos, tiene cuarenta y cinco aos. Es ingeniero. Mi madre, Dolores, ensea ingls en un instituto de idiomas. Mi hermana Maricarmen asiste a la escuela secundaria. Tiene diecisis aos. (/) What is the place value of the underlined number 4,382 3. Mario is planning to conduct an experiment to determine which disinfectant is best for killing bacteria that are often found in kitchens.Which of the following would be the most logical dependent variable for his experiment?A. type of disinfectantB. source of bacteriaC. amount of disinfectantD. number of bacteria that survived using the disinfectant a) The Mayans and Aztecs made notable advances in astronomy and mathematics. b) The Aztecs and Mayans learned to read and write under Spanish rule. c) The Aztecs and Mayans had no concept of the wheel. d) The Incas built many miles of paved roads across their empire. A researcher administers a test of friendliness to a sample of ghosts on Halloween night. The researcher then administers the same test to the same ghosts on Halloween night one year later, and computes the correlation between this year's scores and last year's scores. This correlation coefficient is a measure of____________.a. internal reliability b. test-retest reliabilityc. faceless validityd. predictive validity "Kim wants to run for the U.S. Senate. Kim experimented with drugs in the 1960s, but has not used any drugs in more than 45 years. Kim decides the public does not need this information. What communication behavior is Kim engaging in? By using ________, a writer avoids words and phrases that unfairly and even unethically categorize or stigmatize people in ways related to gender, race, ethnicity, age, disability, or other personal characteristics. describe the error in using the percent equation to answer the equation.30 is 60% of what number is? Please help! Give the answer and how you got it